Duke Mathematical Journal

Hypersurfaces of prescribed curvature measure

Pengfei Guan, Junfang Li, and YanYan Li

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We consider the corresponding Christoffel–Minkowski problem for curvature measures. The existence of star-shaped (nk)-convex bodies with prescribed kth curvature measures (k>0) has been a longstanding problem. This is settled in this paper through the establishment of a crucial a priori C2-estimate for the corresponding curvature equation on Sn.

Article information

Duke Math. J., Volume 161, Number 10 (2012), 1927-1942.

First available in Project Euclid: 27 June 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53C23: Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
Secondary: 35J60: Nonlinear elliptic equations 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42]


Guan, Pengfei; Li, Junfang; Li, YanYan. Hypersurfaces of prescribed curvature measure. Duke Math. J. 161 (2012), no. 10, 1927--1942. doi:10.1215/00127094-1645550. https://projecteuclid.org/euclid.dmj/1340801627

Export citation


  • [1] A. D. Alexandrov, Zur theorie der gemishchten volumina von knovexen korpern, 2, Math. USSR-Sb. 2 (1937), 1205–1238.
  • [2] A. D. Alexandrov, Existence and uniqueness of a convex surface with a given integral curvature, C. R. (Doklady) Acad. Sci. URSS (N.S.) 35 (1942), 131–134.
  • [3] C. Berg, Corps convexes et potentiels sphériques, Mat.-Fys. Medd. Danske Vid. Selsk. 37 (1969), no. 6, 64 pp.
  • [4] L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), 261–301.
  • [5] L. Caffarelli, L. Nirenberg, and J. Spruck, “Nonlinear second order elliptic equations IV: Starshaped compact Weingarten hypersurfaces” in Current Topics in Partial Differential Equations, Kinokuniya, Tokyo, 1986, 1–26.
  • [6] S. Y. Cheng and S. T. Yau, On the regularity of the solution of the $n$-dimensional Minkowski problem, Comm. Pure Appl. Math. 29 (1976), 495–516.
  • [7] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491.
  • [8] W. J. Firey, Christoffel’s problem for general convex bodies, Mathematika 15 (1968), 7–21.
  • [9] P. Guan and Y. Li, $C^{1,1}$ estimates for solutions of a problem of Alexandrov, Comm. Pure Appl. Math. 50 (1997), 789–811.
  • [10] P. Guan and Y. Li, Unpublished research notes, 1995.
  • [11] P. Guan, C. Lin, and X.-N. Ma, The existence of convex body with prescribed curvature measures, Int. Math. Res. Not. IMRN 2009, no. 11, 1947–1975.
  • [12] P. Guan and X.-N. Ma, The Christoffel-Minkowski problem, I: Convexity of solutions of a Hessian equation, Invent. Math. 151 (2003), 553–577.
  • [13] P. Guan and X.-N. Ma, “Convex solutions of fully nonlinear elliptic equations in classical differential geometry” in Geometric Evolution Equations, Contemp. Math. 367, Amer. Math. Soc., Providence, 2005, 115–127.
  • [14] H. Lewy, On differential geometry in the large, I: Minkowski’s problem, Trans. Amer. Math. Soc. 43 (1938), 258–270.
  • [15] L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337–394.
  • [16] V. I. Oliker, Existence and uniqueness of convex hypersurfaces with prescribed Gaussian curvature in spaces of constant curvature, Sem. Inst. Mate. Appl. “Giovanni Sansone”, Univ. Studi Firenze, 1983, 1–39.
  • [17] A. V. Pogorelov, Regularity of a convex surface with given Gaussian curvature, Mat. Sbornik N.S. 31(73) (1952), 88–103.
  • [18] A. V. Pogorelov, Extrinsic Geometry of Convex Surfaces, Transl. Math. Monogr. 35, Amer. Math. Soc., Providence, 1973.
  • [19] A. V. Pogorelov, The Minkowski Multidimensional Problem, V. H. Winston, Washington, D.C., 1978.
  • [20] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia Math. Appl. 44, Cambridge Univ. Press, Cambridge, 1993.