Duke Mathematical Journal

On the Hall algebra of an elliptic curve, II

Olivier Schiffmann

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The Hall algebra UE+ of the category of coherent sheaves on an elliptic curve E defined over a finite field has been explicitly described and shown to be a 2-parameter deformation of the ring of diagonal invariants R+=C[x1±1,,y1,]S (in infinitely many variables). We study a geometric version of this Hall algebra, by considering a convolution algebra of perverse sheaves on the moduli spaces of coherent sheaves on E. This allows us to define a canonical basis B of UE+ in terms of intersection cohomology complexes. We also give a characterization of this basis in terms of an involution, a lattice, and a certain PBW-type basis.

Article information

Source
Duke Math. J., Volume 161, Number 9 (2012), 1711-1750.

Dates
First available in Project Euclid: 6 June 2012

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1338987167

Digital Object Identifier
doi:10.1215/00127094-1593362

Mathematical Reviews number (MathSciNet)
MR2922373

Zentralblatt MATH identifier
1253.14018

Subjects
Primary: 22E57: Geometric Langlands program: representation-theoretic aspects [See also 14D24]
Secondary: 17B37: Quantum groups (quantized enveloping algebras) and related deformations [See also 16T20, 20G42, 81R50, 82B23]

Citation

Schiffmann, Olivier. On the Hall algebra of an elliptic curve, II. Duke Math. J. 161 (2012), no. 9, 1711--1750. doi:10.1215/00127094-1593362. https://projecteuclid.org/euclid.dmj/1338987167


Export citation

References

  • [At] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. Lond. Math. Soc. (3) 7 (1957), 414–452.
  • [BG] V. Baranovsky and V. Ginzburg, Conjugacy classes in loop groups and G-bundles on elliptic curves, Int. Math. Res. Not. IMRN 15 (1996), 733–751.
  • [BBD] A. A. Beĭlinson, J. Bernstein, and P. Deligne, “Faisceaux pervers” in Analysis and Topology on Singular Spaces, I (Luminy, 1981), Astérisque 100, Soc. Math. France, Paris, 1982.
  • [BL] J. Bernstein and V. Lunts, Equivariant Sheaves and Functors, Lecture Notes in Math. 1578, Springer, Berlin, 1994.
  • [BS] I. Burban and O. Schiffmann, On the Hall algebra of an elliptic curve, I, Duke Math. J. 161 (2012), 1171–1231.
  • [D1] P. Deligne, La conjecture de Weil, I, Publ. Math. Inst. Hautes Études Sci. 43 (1974), 273–307.
  • [D2] P. Deligne, La conjecture de Weil, II, Publ. Math. Inst. Hautes Études Sci. 52 (1980), 137–252.
  • [H] T. Honda, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968), 83–95.
  • [KL] D. Kazhdan and G. Lusztig, “Schubert varieties and Poincaré duality” in Geometry of the Laplace Operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math. XXXVI, Amer. Math. Soc., Providence, 1980, 185–203.
  • [KW] R. Kiehl and R. Weissauer, Weil Conjectures, Perverse Sheaves and l’adic Fourier Transform, Ergeb. Math. Grenzgeb. (3) 42, Springer, Berlin, 2001.
  • [K] S. A. Kuleshov, “Construction of bundles on an elliptic curve” in Helices and Vector Bundles, Lond. Math. Soc. Lecture Note Ser. 148, Cambridge Univ. Press, Cambridge, 1990, 7–22.
  • [L] G. Laumon, “Faisceaux automorphes liés aux séries d’Eisenstein” in Automorphic Forms, Shimura Varieties and L-functions, I (Ann Arbor, 1988), Perspect. Math. 10, Academic Press, Boston, 1990, 227–279.
  • [LMB] G. Laumon and L. Moret-Bailly, Champs algébriques, Ergeb. Math. Grenzgeb. (3) 39, Springer, Berlin, 2000.
  • [LP] J. Le Potier, Fibrés vectoriels sur les courbes algébriques, Publ. Math. Univ. Paris 7, 1995.
  • [LM] H. Lenzing and H. Meltzer, “Sheaves on a weighted projective line of genus one, and representations of a tubular algebra” in Representations of Algebras (Ottawa, 1992), CMS Conf. Proc. 14, Amer. Math. Soc., Providence, 1993, 313–337.
  • [L1] G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. Math. 42 (1981), 169–178.
  • [L2] G. Lusztig, Character sheaves, I, Adv. Math. 56 (1985), 193–237.
  • [L3] G. Lusztig, Introduction to Quantum Groups, Progr. Math. 110, Birkhäuser, Boston, 1993.
  • [M] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Math. Monogr., Oxford Univ. Press, New York, 1995.
  • [S1] O. Schiffmann, Canonical bases and moduli spaces of sheaves on curves, Invent. Math. 165 (2006), 453–524.
  • [S2] O. Schiffmann, Lectures on canonical and crystal bases of Hall algebras, preprint, arXiv:0910.4460v2 [math.QA]
  • [SV1] O. Schiffmann and E. Vasserot, The elliptic Hall algebra, Cherednick Hecke algebras and Macdonald polynomials, Compos. Math. 147 (2011), 188–234.
  • [SV2] O. Schiffmann and E. Vasserot, The elliptic Hall algebra and the equivariant K-theory of the Hilbert scheme of $\mathbb{A}^{2}$, preprint, arXiv:0905.2555v3 [math.AQ]
  • [Sh] S. S. Shatz, The decomposition and specialization of algebraic families of vector bundles, Compos. Math. 35 (1977), 163–187.