## Duke Mathematical Journal

### On a question of Davenport and Lewis and new character sum bounds in finite fields

Mei-Chu Chang

#### Abstract

Let $\chi$ be a nontrivial multiplicative character of $\Bbb F_{p^n}$. We obtain the following results.

(1) Let $\varepsilon>0$ be given. If $B=\big\{ \sum _{j=1}^n x_j \omega_j \;: x_j \in [N_j+1, N_j+H_j]\cap \Bbb Z , j=1,\ldots, n %\text{ for all } j \big\}$ is a box satisfying ${\mathop\Pi\limits}_{j=1}^{n}H_j>p^{({2}/{5}+\varepsilon)n},$ then for $p>p(\varepsilon)$ we have, denoting $\chi$ a nontrivial multiplicative character, $$\Big| \sum_{x \in B} \chi(x) \Big| \ll_np^{-{\varepsilon^{2}}/4} |B|$$ unless $n$ is even, $\chi$ is principal on a subfield $F_2$ of size $p^{n/2}$, and $\max_\xi\!\!|B\cap \xi F_2| >p^{-\varepsilon}|B|$.

(2) Assume that $A, B \subset \Bbb F_p$ so that $$|A|> p^{(4/9)+\varepsilon},\qquad |B|> p^{(4/9)+\varepsilon},\qquad |B+B| \lt K|B|.$$ Then $$\Big|\sum_{x\in A, y\in B} \chi(x+y)\Big| \lt p^{-\tau}|A|\;|B|.$$

(3) Let $I\subset \Bbb F_p$ be an interval with $|I|=p^{\beta}$, and let $\mathcal D\subset \Bbb F_p$ be a $p^\beta$-spaced set with $|\mathcal D|=p^\sigma$. Assume that $2\beta+\sigma-{\beta\sigma}/{(1-\beta)}> 1/2+\delta$. Then for a nonprincipal multiplicative character $\chi$, $$\Big|\sum_{x\in I, y\in \mathcal D}\chi(x+y)\Big| \lt p^{-{\delta^2}/{12}}|I|\;\;|\mathcal D|.$$ We also slightly improve a result of Karacuba [K3]

#### Article information

Source
Duke Math. J., Volume 145, Number 3 (2008), 409-442.

Dates
First available in Project Euclid: 15 December 2008

https://projecteuclid.org/euclid.dmj/1229349902

Digital Object Identifier
doi:10.1215/00127094-2008-056

Mathematical Reviews number (MathSciNet)
MR2462111

Zentralblatt MATH identifier
1241.11137

#### Citation

Chang, Mei-Chu. On a question of Davenport and Lewis and new character sum bounds in finite fields. Duke Math. J. 145 (2008), no. 3, 409--442. doi:10.1215/00127094-2008-056. https://projecteuclid.org/euclid.dmj/1229349902

#### References

• J. Bourgain, A. Glibichuk, and S. Konyagin, Estimate for the number of sums and products and for exponential sums in fields of prime order, J. London Math. Soc. (2) 73 (2006), 380--398.
• J. Bourgain, N. Katz, and T. Tao, A sum-product estimate in finite fields, and applications, Geom. Funct. Anal. 14 (2004), 27--57.
• D. A. Burgess, On character sums and primitive roots, Proc. London Math. Soc. (3) 12 (1962), 179--192.
• —, Character sums and primitive roots in finite fields, Proc. London Math. Soc. (3) 17 (1967), 11--25.
• —, A note on character sums over finite fields, J. Reine Angew. Math. 255 (1972), 80--82.
• H. Davenport, On primitive roots in finite fields, Quart. J. Math. Oxford 8 (1937), 308--312.
• H. Davenport and D. Lewis, Character sums and primitive roots in finite fields, Rend. Circ. Mat. Palermo (2) (1963), 129--136.
• J. Friedlander and H. Iwaniec, Estimates for character sums, Proc. Amer. Math. Soc. 119 (1993), 265--372.
• M. Z. Garaev, An explicit sum-product estimate in $\Bbb F_p$, Int. Math. Res. Not. IMRN 2007, no. 11, art. ID rnm035.
• D. Hart, A. Iosevich, and J. Solymosi, Sum product estimates in finite fields via Kloosterman sums, Int. Math. Res. Not. IMRN 2007, no. 5, art. ID rnm007.
• H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53, Amer. Math. Soc., Providence, 2004.
• A. A. Karacuba [Karatsuba], Estimates of character sums (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 20--30.
• —, A certain arithmetic sum, Soviet Math. Dokl. 12 (1971), 1172--1174.
• —, Distribution of values of Dirichlet characters on additive sequences (in Russian), Dokl. Akad. Nauk SSSR 319, no. 3 (1991), 543--545.; English translation in Soviet Math. Dokl. 44 (1992), 145--148.
• —, Character sums with weights, Izv. Math. 64 (2000), 249--263.
• N. H. Katz and C.-Y. Shen, A slight improvement to Garaev's sum product estimate, Proc. Amer. Math. Soc. 136 (2008), 2499--2504.
• —, Garaev's inequality in finite fields not of prime order, Online J. Anal. Comb. 3 (2008), no. 3.
• N. M. Katz, An estimate for character sums, J. Amer. Math. Soc. 2 (1989), 197--200.
• G. I. Perel'Muter and I. Shparlinskiĭ, Distribution of primitive roots in finite fields, Russian Math. Surveys 45 (1990), 223--224.
• T. Tao and V. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math. 105, Cambridge Univ. Press, Cambridge, 2006.