Duke Mathematical Journal

Endoscopic lifting in classical groups and poles of tensor L-functions

David Ginzburg

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this article, we introduce a new construction of endoscopic lifting in classical groups. To do that, we study a certain small representation and use it as a kernel function to construct the liftings. As an application of the construction, we study the relations of poles of tensor L-function with certain liftings and certain period integrals

Article information

Duke Math. J., Volume 141, Number 3 (2008), 447-503.

First available in Project Euclid: 15 February 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11F70: Representation-theoretic methods; automorphic representations over local and global fields
Secondary: 22E55: Representations of Lie and linear algebraic groups over global fields and adèle rings [See also 20G05]


Ginzburg, David. Endoscopic lifting in classical groups and poles of tensor $L$ -functions. Duke Math. J. 141 (2008), no. 3, 447--503. doi:10.1215/00127094-2007-002. https://projecteuclid.org/euclid.dmj/1203087634

Export citation


  • J. Arthur, ``Automorphic representations and number theory'' in 1980 Seminar on Harmonic Analysis (Montréal, 1980), CMS Conf. Proc. 1, Amer. Math. Soc., Providence, 1981, 3--54.
  • A. Borel, ``Automorphic $L$-functions'' in Automorphic Forms, Representations and $L$-functions, Part 2 (Corvallis, Ore., 1977), Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, 1979, 27--61.
  • D. Bump, S. Friedberg, and D. Ginzburg, On the cubic Shimura lift for ${\rm PGL}\sb 3$, Israel J. Math. 126 (2001), 289--307.
  • J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro [Piatetskii-Shapiro], and F. Shahidi, Functoriality for the classical groups, Publ. Math. Inst. Hautes Études Sci. 99 (2004), 163--233.
  • D. H. Collingwood and W. M. Mcgovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold Math. Ser., Van Nostrand Reinhold, New York, 1993.
  • W. T. Gan and G. Savin, Real and global lifts from ${\rm PGL}_3$ to $G_2$, Int. Math. Res. Not. 2003, no. 50, 2699--2724.
  • S. Gelbart and I. Piatetski-Shapiro [Piatetskii-Shapiro], ``$L$-functions for $G\times {\rm GL}(n)$'' in Explicit Constructions of Automorphic $L$-Functions, Lecture Notes in Math. 1254, Springer, Berlin, 1987, 53--136.
  • D. Ginzburg, $L$-functions for ${\rm SO}_{\sb {n}}\times {\rm GL}_{\sb k}$, J. Reine Angew. Math. 405 (1990), 156--180.
  • —, A construction of CAP representations in classical groups, Int. Math. Res. Not. 2003, no. 20, 1123--1140.
  • —, Certain conjectures relating unipotent orbits to automorphic representations, Israel J. Math. 151 (2006), 323--356.
  • D. Ginzburg and J. Hundley, Multivariable Rankin-Selberg integrals for orthogonal groups, Int. Math. Res. Not. 2004, no. 58, 3097--3119.
  • —, On spin $L$-functions for ${\rm GSO}_{10}$, J. Reine Angew. Math. 603 (2007), 183--213.
  • D. Ginzburg and D. Jiang, Periods and liftings: From $G_2$ to $C_3$, Israel J. Math. 123 (2001), 29--59.
  • D. Ginzburg, S. Rallis, and D. Soudry, On the automorphic theta representation for simply laced groups, Israel J. Math. 100 (1997), 61--116.
  • —, Periods, poles of $L$-functions and symplectic-orthogonal theta lifts, J. Reine Angew. Math. 487 (1997), 85--114.
  • —, $L$-functions for symplectic groups, Bull. Soc. Math. France 126 (1998), 181--244.
  • —, Lifting cusp forms on ${\rm GL}_{2n}$ to $\widetilde{\rm Sp}_{2n}$: The unramified correspondence, Duke Math. J. 100 (1999), 243--266.
  • —, On a correspondence between cuspidal representations of ${\rm GL}_{2n}$ and $\widetilde{\rm Sp}_{2n}$, J. Amer. Math. Soc. 12 (1999), 849--907.
  • —, On explicit lifts of cusp forms from ${\rm GL}_m$ to classical groups, Ann. of Math. (2) 150 (1999), 807--866.
  • —, Endoscopic representations of $\widetilde{{\rm Sp}}_{\sb {2n}}$, J. Inst. Math. Jussieu 1 (2002), 77--123.
  • —, On Fourier coefficients of automorphic forms of symplectic groups, Manuscripta Math. 111 (2003), 1--16.
  • —, ``Construction of CAP representations for symplectic groups using the descent method'' in Automorphic Representations, $L$-Functions and Applications: Progress and Prospects (Columbus, Ohio, 2003), Ohio State Univ. Math. Res. Inst. Pub. 11, de Gruyter, Berlin, 2005, 193--224.
  • H. Jacquet, ``On the residual spectrum of ${\rm GL}(n)$'' in Lie Group Representations, II (College Park, Md., 1982/1983), Lecture Notes in Math. 1041, Springer, Berlin, 1984, 185--208.
  • H. Jacquet, I. I. Piatetskii-Shapiro [Piatetski-Shapiro], and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367--464.
  • D. Jiang, On the fundamental automorphic $L$-functions of ${\rm SO}(2n+1)$, Int. Math. Res. Not. 2006, no. 64069.
  • R. C. King, Branching rules for classical Lie groups using tensor and spinor methods, J. Phys. A 8 (1975), 429--449.
  • R. P. Langlands, ``Problems in the theory of automorphic forms'' in Lectures in Modern Analysis and Applications, III, Lecture Notes in Math. 170, Springer, Berlin, 1970, 18--86.
  • —, On the Functional Equations Satisfied by Eisenstein Series, Lecture Notes in Math. 544, Springer, Berlin, 1976.
  • C. Moeglin and J.-L. Waldspurger, Décomposition spectrale et séries d'Eisenstein: Une paraphrase de l'Écriture, Progr. Math. 113, Birkhaüser, Basel, 1994.
  • P. Perrin, ``Représentations de Schrödinger, indice de Maslov et groupe metaplectique'' in Noncommutative Harmonic Analysis and Lie Groups (Marseille, 1980), Lecture Notes in Math. 880, Springer, Berlin, 1981, 370--407.
  • G. Savin, Local Shimura correspondence, Math. Ann. 280 (1988), 185--190.
  • F. Shahidi, On certain $L$-functions, Amer. J. Math. 103 (1981), 297--355.
  • D. Soudry, Rankin-Selberg convolutions for ${\rm SO}\sb {2l+1}\times{\rm GL}\sb n$: Local theory, Mem. Amer. Math. Soc. 105 (1993), no. 500.
  • T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), 279--293.