Duke Mathematical Journal

Quasi-isometric classification of graph manifold groups

Jason A. Behrstock and Walter D. Neumann

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We show that the fundamental groups of any two closed irreducible nongeometric graph manifolds are quasi-isometric. We also classify the quasi-isometry types of fundamental groups of graph manifolds with boundary in terms of certain finite two-colored graphs. A corollary is the quasi-isometric classification of Artin groups whose presentation graphs are trees. In particular, any two right-angled Artin groups whose presentation graphs are trees of diameter greater than 2 are quasi-isometric; further, this quasi-isometry class does not include any other right-angled Artin groups

Article information

Source
Duke Math. J., Volume 141, Number 2 (2008), 217-240.

Dates
First available in Project Euclid: 17 January 2008

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1200601791

Digital Object Identifier
doi:10.1215/S0012-7094-08-14121-3

Mathematical Reviews number (MathSciNet)
MR2376814

Zentralblatt MATH identifier
1194.20045

Subjects
Primary: 20F65: Geometric group theory [See also 05C25, 20E08, 57Mxx]
Secondary: 57N10: Topology of general 3-manifolds [See also 57Mxx] 20F36: Braid groups; Artin groups

Citation

Behrstock, Jason A.; Neumann, Walter D. Quasi-isometric classification of graph manifold groups. Duke Math. J. 141 (2008), no. 2, 217--240. doi:10.1215/S0012-7094-08-14121-3. https://projecteuclid.org/euclid.dmj/1200601791


Export citation

References

  • J. Behrstock, C. DruţU, and L. Mosher, Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity, preprint,\arxivmath/0512592v4 [math.GT]
  • M. Bestvina, personal communication, Oct. 2005.
  • N. Brady, J. P. Mccammond, B. MüHlherr, and W. D. Neumann, ``Rigidity of Coxeter groups and Artin groups'' in Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, Israel, 2000), Geom. Dedicata 94 (2002), 91--109.
  • A. M. Brunner, Geometric quotients of link groups, Topology Appl. 48 (1992), 245--262.
  • J. W. Cannon and D. Cooper, A characterization of cocompact hyperbolic and finite-volume hyperbolic groups in dimension three, Trans. Amer. Math. Soc. 330 (1992), 419--431.
  • D. Eisenbud and W. D. Neumann, Three-Dimensional Link Theory and Invariants of Plane Curve Singularities, Ann. of Math. Stud. 110, Princeton Univ. Press, Princeton, 1985.
  • A. Eskin, D. Fisher, and K. Whyte, Quasi-isometries and rigidity of solvable groups, preprint,\arxivmath/0511647v3 [math.GR]
  • S. M. Gersten, Divergence in $3$-manifold groups, Geom. Funct. Anal. 4 (1994), 633--647.
  • C. Mca. Gordon, Artin groups, $3$-manifolds and coherence, Bol. Soc. Mat. Mexicana (3) 10 (2004), 193--198.
  • M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53--73.
  • —, ``Asymptotic invariants of infinite groups'' in Geometric Group Theory, Vol. 2 (Sussex, U.K. 1991) London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press, Cambridge, 1993, 1--295.
  • S. M. Hermiller and J. Meier, Artin groups, rewriting systems and three-manifolds, J. Pure Appl. Algebra 136 (1999), 141--156.
  • M. Kapovich and B. Leeb, Quasi-isometries preserve the geometric decomposition of Haken manifolds, Invent. Math. 128 (1997), 393--416.
  • —, $3$-manifold groups and nonpositive curvature, Geom. Funct. Anal. 8 (1998), 841--852.
  • B. D. Mckay, nauty, http://cs.anu.edu.au/$\sim$bdm/nauty/
  • J. Milnor, A note on curvature and the fundamental group, J. Differential Geometry 2 (1968), 1--7.
  • J. W. Morgan and H. Bass, eds., The Smith Conjecture (New York, 1979), Pure Appl. Math. 112, Academic Press, Orlando, 1984.
  • W. D. Neumann, Commensurability and virtual fibration for graph manifolds, Topology 36 (1997), 355--378.
  • W. D. Neumann and G. A. Swarup, Canonical decompositions of $3$-manifolds, Geom. Topol. 1 (1997), 21--40.
  • P. Papasoglu and K. Whyte, Quasi-isometries between groups with infinitely many ends, Comment. Math. Helv. 77 (2002), 133--144.
  • G. Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint,\arxivmath/0211159v1 [math.DG]
  • —, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint,\arxivmath/0307245v1 [math.DG]
  • —, Ricci flow with surgery on three-manifolds, preprint,\arxivmath/0303109v1 [math.DG]
  • E. G. Rieffel, Groups quasi-isometric to $\mathbf H^2\times\mathbf R$, J. London Math. Soc. (2) 64 (2001), 44--60.
  • R. E. Schwartz, The quasi-isometry classification of rank one lattices, Inst. Hautes Études Sci. Publ. Math. 82 (1995), 133--168.
  • G. P. Scott, Finitely generated $3$-manifold groups are finitely presented, J. London Math. Soc. (2) 6 (1973), 437--440.
  • K. Shan, personal communication, March 2006.
  • A. S. šVarc, A volume invariant of coverings (in Russian), Dokl. Akad. Nauk. SSSR (N.S.) 105 (1955), 32--34.
  • W. P. Thurston, Hyperbolic structures on $3$-manifolds, I: Deformation of a cylindrical manifold, Ann. of Math. (2) 124 (1986), 203--246.