Duke Mathematical Journal

Borcherds products and arithmetic intersection theory on Hilbert modular surfaces

Jan H. Bruinier, José I. Burgos Gil, and Ulf Kühn

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We prove an arithmetic version of a theorem of Hirzebruch and Zagier saying that Hirzebruch-Zagier divisors on a Hilbert modular surface are the coefficients of an elliptic modular form of weight 2. Moreover, we determine the arithmetic self-intersection number of the line bundle of modular forms equipped with its Petersson metric on a regular model of a Hilbert modular surface, and we study Faltings heights of arithmetic Hirzebruch-Zagier divisors

Article information

Duke Math. J., Volume 139, Number 1 (2007), 1-88.

First available in Project Euclid: 13 July 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11G18: Arithmetic aspects of modular and Shimura varieties [See also 14G35]
Secondary: 11F41: Automorphic forms on GL(2); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces [See also 14J20] 14C17: Intersection theory, characteristic classes, intersection multiplicities [See also 13H15] 14G40: Arithmetic varieties and schemes; Arakelov theory; heights [See also 11G50, 37P30] 14C20: Divisors, linear systems, invertible sheaves


Bruinier, Jan H.; Burgos Gil, José I.; Kühn, Ulf. Borcherds products and arithmetic intersection theory on Hilbert modular surfaces. Duke Math. J. 139 (2007), no. 1, 1--88. doi:10.1215/S0012-7094-07-13911-5. https://projecteuclid.org/euclid.dmj/1184341238

Export citation


  • M. Abramowitz and I. A. Stegun, eds., Pocketbook of Mathematical Functions, Harri Deutsch, Thun, Switzerland, 1984.
  • F. Andreatta and E. Z. Goren, Geometry of Hilbert modular varieties over totally ramified primes, Int. Math. Res. Not. 2003, no. 33, 1786--1835.
  • R. E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), 491--562.
  • —, The Gross-Kohnen-Zagier theorem in higher dimensions, Duke Math. J. 97 (1999), 219--233.
  • J.-B. Bost, H. Gillet, and C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994), 903--1027.
  • J. H. Bruinier, Borcherds products and Chern classes of Hirzebruch-Zagier divisors, Invent. Math. 138 (1999), 51--83.
  • —, Borcherds Products on $\Orth(2,l)$ and Chern Classes of Heegner Divisors, Lecture Notes in Math. 1780, Springer, Berlin, 2002.
  • —, Two applications of the curve lemma for orthogonal groups, Math. Nachr. 274/275 (2004), 19--31.
  • J. H. Bruinier and M. Bundschuh, On Borcherds products associated with lattices of prime discriminant, Ramanujan J. 7 (2003), 49--61.
  • J. H. Bruinier and E. Freitag, Local Borcherds products, Ann. Inst. Fourier (Grenoble) 51 (2001), 1--26.
  • J. H. Bruinier and J. Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), 45--90.
  • J. H. Bruinier and U. KüHn, Integrals of automorphic Green's functions associated to Heegner divisors, Int. Math. Res. Not. 2003, no. 31, 1687--1729.
  • J. I. Burgos [Gil], Arithmetic Chow rings and Deligne-Beilinson cohomology, J. Algebraic Geom. 6 (1997), 335--377.
  • J. I. Burgos Gil, J. Kramer, and U. KüHn, Arithmetic characteristic classes of automorphic vector bundles, Doc. Math. 10 (2005), 619, --716.
  • —, Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu 6 (2007), 1--172.
  • C.-L. Chai, Arithmetic minimal compactification of the Hilbert-Blumenthal moduli spaces, Ann. of Math. (2) 131 (1990), 541--554.
  • P. Deligne and G. Pappas, Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant, Compositio Math. 90 (1994), 59--79.
  • P. Deligne and M. Rapoport, ``Les schémas de modules de courbes elliptiques'' in Modular Functions of One Variable, II (Antwerp, Belgium, 1972), Lecture Notes in Math. 349, Springer, Berlin, 1973, 143--316.
  • H.-G. Franke, Kurven in Hilbertschen Modulflächen und Humbertschen Flächen im Siegel-Raum, Bonner Math. Schriften 104, Univ. Bonn, Mathematisches Institut, Bonn, 1977.
  • E. Freitag, Eine Bemerkung zur Theorie der Hilbertschen Modulmannigfaltigkeiten hoher Stufe, Math. Z. 171 (1980), 27--35.
  • —, Siegelsche Modulfunktionen, Grundlehren Math. Wiss. 254, Springer, Berlin, 1983.
  • —, Hilbert Modular Forms, Springer, Berlin, 1990.
  • W. Fulton, Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1998.
  • G. Van Der Geer, Hilbert Modular Surfaces, Ergeb. Math. Grenzgeb. (3) 16, Springer, Berlin, 1988.
  • H. Gillet and C. Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric, I, Ann. of Math. (2) 131 (1990), 163--203.; II, Ann. of Math. (2) 131 (1990), 205--238. ;
  • —, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 931--174.
  • E. Z. Goren, Lectures on Hilbert Modular Varieties and Modular Forms, CRM Monogr. Ser. 14, Amer. Math. Soc., Providence, 2002.
  • G. Harder, R. P. Langlands, and M. Rapoport, Algebraische Zyklen auf Hilbert-Blumenthal-Flächen, J. Reine Angew. Math. 366 (1986), 53--120.
  • R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.
  • W. Hausmann, Kurven auf Hilbertschen Modulflächen, Bonner Math. Schriften 123, Univ. Bonn, Mathematisches Institut, Bonn, 1979.
  • D. A. Hejhal, The Selberg Trace Formula for $\mboxPSL(2,\R)$, Vol. 2, Lecture Notes in Math. 1001, Springer, Berlin, 1983.
  • H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II, Ann. of Math. (2) 79 (1964), 109--203., 205--326.
  • F. Hirzebruch and D. Zagier, Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus, Invent. Math. 36 (1976), 57--113.
  • H. Iwaniec, Introduction to the Spectral Theory of Automorphic Forms, Bibl. Rev. Math. Iberoamericana, Univ. Autónoma de Madrid, Madrid, 1995.
  • J. Kramer, An arithmetic theory of Siegel-Jacobi forms, Habilitationsschrift, ETH Zürich, Zürich, 1992.
  • S. S. Kudla, Algebraic cycles on Shimura varieties of orthogonal type, Duke Math. J. 86 (1997), 39--78.
  • —, Central derivatives of Eisenstein series and height pairings, Ann. of Math. (2) 146 (1997), 545--646.
  • —, ``Derivatives of Eisenstein series and arithmetic geometry'' in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 173--183.
  • —, Derivatives of Eisenstein series and generating functions for arithmetic cycles, Astérisque 276 (2002), 341--368., Séminaire Bourbaki 1999/2000.
  • —, Integrals of Borcherds forms, Compositio Math. 137 (2003), 293--349.
  • —, ``Special cycles and derivatives of Eisenstein series'' in Heegner Points and Rankin $L$-Series, Math. Sci. Res. Inst. Publ. 49, Cambridge Univ. Press, Cambridge, 2004, 243--270.
  • S. S. Kudla and U. KüHn, Arithmetic intersection numbers of Shimura curves, in preparation.
  • S. S. Kudla and M. Rapoport, Arithmetic Hirzebruch-Zagier cycles, J. Reine Angew. Math. 515 (1999), 155--244.
  • S. S. Kudla, M. Rapoport, and T. Yang, Derivatives of Eisenstein series and Faltings heights, Compos. Math. 140 (2004), 887--951.
  • U. KüHn, Generalized arithmetic intersection numbers, J. Reine Angew. Math. 534 (2001), 209--236.
  • —, Über die arithmetischen Selbstschnittzahlen zu Modulkurven und Hilbertschen Modulflächen, Dissertation, Humboldt-Universität zu Berlin, Berlin, 1999.
  • S. Lang, $\Sl_2(\R)$, Addison-Wesley, Reading, Mass., 1975.
  • A. Langer, Zero-cycles on Hilbert-Blumenthal surfaces, Duke Math. J. 103 (2000), 131--163.
  • V. Maillot and D. Roessler, Conjectures sur les dérivées logarithmiques des fonctions L d'Artin aux entiers négatifs, Math. Res. Lett. 9 (2002), 715--724.
  • —, On the periods of motives with complex multiplication and a conjecture of Gross-Deligne, Ann. of Math. (2) 160 (2004), 727--754.
  • D. Mumford, Hirzebruch's proportionality theorem in the noncompact case, Invent. Math. 42 (1977), 239--272.
  • T. Oda and M. Tsuzuki, Automorphic Green functions associated with the secondary spherical functions, Publ. Res. Inst. Math. Sci. 39 (2003), 451--533.
  • A. Ogg, ``Survey of modular functions of one variable'' in Modular Functions of One Variable, I (Antwerp, Belgium, 1972), Lecture Notes in Math. 320, Springer, Berlin, 1973, 1--35.
  • K. Ono and C. Skinner, Fourier coefficients of half-integral weight modular forms modulo $\ell$, Ann. of Math. (2) 147 (1998), 453--470.
  • G. Pappas, Arithmetic models for Hilbert modular varieties, Compositio Math. 98 (1995), 43--76.
  • M. Rapoport, Compactifications de l'espace de modules de Hilbert-Blumenthal, Compositio Math. 36 (1978), 255--335.
  • C. Soulé, D. Abramovich, J.-F. Burnol, and J. Kramer, Lectures on Arakelov Geometry, Cambridge Stud. Adv. Math. 33, Cambridge Univ. Press, Cambridge, 1992.
  • I. Vollaard, On the Hilbert-Blumenthal moduli problem, J. Inst. Math. Jussieu 4 (2005), 653--683.
  • T. Wedhorn, personal communication, June 2003.
  • D. B. Zagier, Modular forms associated to real quadratic fields, Invent. Math. 30 (1975), 1--46.
  • —, Zetafunktionen und quadratische Körper, Hochschultext, Springer, Berlin, 1981.
  • —, ``Modular points, modular curves, modular surfaces and modular forms'' in Workshop Bonn 1984 (Bonn, 1984), Lecture Notes in Math. 1111, Springer, Berlin, 1985, 225--248.