Duke Mathematical Journal

Energy functionals and canonical Kähler metrics

Jian Song and Ben Weinkove

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Yau [Y2] has conjectured that a Fano manifold admits a Kähler-Einstein metric if and only if it is stable in the sense of geometric invariant theory. There has been much progress on this conjecture by Tian [T1], [T2], Donaldson [Do1], [Do2], and others. The Mabuchi energy functional plays a central role in these ideas. We study the Ek functionals introduced by X. X. Chen and G. Tian [CT1] which generalize the Mabuchi energy. We show that if a Fano manifold admits a Kähler-Einstein metric, then the functional E1 is bounded from below and, modulo holomorphic vector fields, is proper. This answers affirmatively a question raised by Chen [C2]. In fact, we show that E1 is proper if and only if there exists a Kähler-Einstein metric, giving a new analytic criterion for the existence of this canonical metric, with possible implications for the study of stability. We also show that on a Fano Kähler-Einstein manifold, all of the functionals Ek are bounded below on the space of metrics with nonnegative Ricci curvature

Article information

Source
Duke Math. J., Volume 137, Number 1 (2007), 159-184.

Dates
First available in Project Euclid: 8 March 2007

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1173373453

Digital Object Identifier
doi:10.1215/S0012-7094-07-13715-3

Mathematical Reviews number (MathSciNet)
MR2309146

Zentralblatt MATH identifier
1116.32018

Subjects
Primary: 32Q20: Kähler-Einstein manifolds [See also 53Cxx]
Secondary: 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60]

Citation

Song, Jian; Weinkove, Ben. Energy functionals and canonical Kähler metrics. Duke Math. J. 137 (2007), no. 1, 159--184. doi:10.1215/S0012-7094-07-13715-3. https://projecteuclid.org/euclid.dmj/1173373453


Export citation

References

  • T. Aubin, Équations du type Monge-Ampère sur les variétés kähleriennes compactes, Bull. Sci. Math. (2) 102 (1978), 63--95.
  • S. Bando, The K-energy map, almost Einstein Kähler metrics and an inequality of the Miyaoka-Yau type, Tohoku Math. J. 39 (1987), 231--235.
  • S. Bando and T. Mabuchi, ``Uniqueness of Einstein Kähler metrics modulo connected group actions'' in Algebraic Geometry (Sendai, Japan, 1985), Adv. Stud. Pure Math. 10, North-Holland, Amsterdam, 1987, 11--40.
  • X. X. Chen, On the lower bound of the Mabuchi energy and its application, Internat. Math. Res. Notices 2000, no. 12, 607--623.
  • —, On the lower bound of energy functional $E_1$, I: A stability theorem on the Kähler Ricci flow, J. Geom. Anal. 16 (2006), 23--38.
  • —, private communication, 2005.
  • X. X. Chen and G. Tian, Ricci flow on Kähler-Einstein surfaces, Invent. Math. 147 (2002), 487--544.
  • —, Ricci flow on Kähler-Einstein manifolds, Duke Math. J. 131 (2006), 17--73.
  • —, Geometry of Kähler metrics and foliations by holomorphic discs, preprint.
  • P. Deligne, ``Le determinant de la cohomologie'' in Current Trends in Arithmetical Algebraic Geometry (Arcata, Calif., 1985), Contemp. Math. 67, Amer. Math. Soc., Providence, 1987, 93--177.
  • W. Y. Ding, Remarks on the existence problem of positive Kähler-Einstein metrics, Math. Ann. 282 (1988), 463--471.
  • W. Y. Ding and G. Tian, Kähler-Einstein metrics and the generalized Futaki invariant, Invent. Math. 110 (1992), 315--335.
  • S. K. Donaldson, Scalar curvature and projective embeddings, I, J. Differential Geom. 59 (2001), 479--522.
  • —, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), 289--349.
  • —, Scalar curvature and projective embeddings, II, Q. J. Math. 56 (2005), 345--356.
  • A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983), 437--443.
  • A. D. Hwang and G. Maschler, Central Kähler metrics with non-constant central curvature, Trans. Amer. Math. Soc. 355 (2003), 2183--2203.
  • T. Mabuchi, K-energy maps integrating Futaki invariants, Tohoku Math. J. (2) 38 (1986), 575--593.
  • G. Maschler, Central Kähler metrics, Trans. Amer. Math. Soc. 355 (2003), 2161--2182.
  • S. T. Paul and G. Tian, Analysis of geometric stability, Int. Math. Res. Not. 2004, no. 48, 2555--2591.
  • D. H. Phong and J. Sturm, Stability, energy functionals, and Kähler-Einstein metrics, Comm. Anal. Geom. 11 (2003), 565--597.
  • —, Scalar curvature, moment maps and the Deligne pairing, Amer. J. Math. 126 (2004), 693--712.
  • —, The Futaki invariant and the Mabuchi energy of a complete intersection, Comm. Anal. Geom. 12 (2004), 321--343.
  • —, On stability and the convergence of the Kähler-Ricci flow, J. Differential Geom. 72 (2006), 149--168.
  • J. Ross and R. P. Thomas, A study of the Hilbert-Mumford criterion for the stability of projective varieties, preprint.
  • Y. T. Siu, Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, DMV Sem. 8, Birkhäuser, Basel, 1987.
  • J. Song and B. Weinkove, On the convergence and singularities of the J-flow with applications to the Mabuchi energy, preprint.
  • J. Sturm, personal communication, 2002.
  • G. Tian, The K-energy on hypersurfaces and stability, Comm. Anal. Geom. 2 (1994), 239--265.
  • —, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 1--37.
  • —, Canonical Metrics in Kähler Geometry, Lectures Math. ETH Zürich, Birkhäuser, Basel, 2000.
  • G. Tian and X. Zhu, A nonlinear inequality of Moser-Trudinger type, Calc. Var. Partial Differential Equations 10 (2000), 349--354.
  • B. Weinkove, On the $J$-flow in higher dimensions and the lower boundedness of the Mabuchi energy, J. Differential Geom. 73 (2006), 351--358.
  • S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978), 339--411.
  • —, ``Open problems in geometry'' in Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, 1990), Proc. Sympos. Pure Math. 54, Part I, Amer. Math. Soc., Providence, 1993, 1--28.
  • S. Zhang, Heights and reductions of semi-stable varieties, Compositio Math. 104 (1996), 77--105.