Duke Mathematical Journal

Invariant distributions on p-adic analytic groups

Jan Kohlhaase

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let p be a prime number, let L be a finite extension of the field Qp of p-adic numbers, let K be a spherically complete extension field of L, and let G be the group of L-rational points of a split reductive group over L. We derive several explicit descriptions of the center of the algebra D(G,K) of locally analytic distributions on G with values in K. The main result is a generalization of an isomorphism of Harish-Chandra which connects the center of D(G,K) with the algebra of Weyl-invariant, centrally supported distributions on a maximal torus of G. This isomorphism is supposed to play a role in the theory of locally analytic representations of G as studied by P. Schneider and J. Teitelbaum

Article information

Source
Duke Math. J., Volume 137, Number 1 (2007), 19-62.

Dates
First available in Project Euclid: 8 March 2007

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1173373450

Digital Object Identifier
doi:10.1215/S0012-7094-07-13712-8

Mathematical Reviews number (MathSciNet)
MR2309143

Zentralblatt MATH identifier
1133.11066

Subjects
Primary: 11S80: Other analytic theory (analogues of beta and gamma functions, $p$-adic integration, etc.) 16S30: Universal enveloping algebras of Lie algebras [See mainly 17B35] 16U70: Center, normalizer (invariant elements) 22E50: Representations of Lie and linear algebraic groups over local fields [See also 20G05]

Citation

Kohlhaase, Jan. Invariant distributions on $p$ -adic analytic groups. Duke Math. J. 137 (2007), no. 1, 19--62. doi:10.1215/S0012-7094-07-13712-8. https://projecteuclid.org/euclid.dmj/1173373450


Export citation

References

  • M. Andler, A. Dvorsky, and S. Sahi, Kontsevich quantization and invariant distributions on Lie groups, Ann. Sci. École Norm. Sup. (4) 35 (2002), 371--390.
  • L. Berger and C. Breuil, Towards a $p$-adic Langlands programme, preprint.
  • S. Bosch, U. GüNtzer, and R. Remmert, Non-Archimedean Analysis: A Systematic Approach to Rigid Analytic Geometry, Grundlehren Math. Wiss. 261, Springer, Berlin, 1984.
  • N. Bourbaki, Éléments de mathématique, fasc. 36: Variétés differentielles et analytiques: Fascicule de résultats (Paragraphes 8--15), Actualités Sci. Indust. 1347, Hermann, Paris, 1971.
  • —, Éléments de mathématique, fasc. 37: Groupes et algèbres de Lie, chapitre 2: Algèbres de Lie libres; chapitre 3: Groupes de Lie, Actualités Sci. Indust. 1349, Hermann, Paris, 1972.
  • —, Elements of Mathematics: Commutative Algebra, Hermann, Paris, 1972.
  • —, Topological Vector Spaces, chapters 1--5, Springer, Berlin, 1987.
  • J. Dixmier, Algèbres enveloppantes, Cahiers Sci. 37, Gauthiers-Villars, Paris, 1974.
  • J. D. Dixon, M. P. F. Du Sautoy, A. Mann, and D. Segal, Analytic Pro-$p$ Groups, 2nd ed., Cambridge Stud. Adv. Math. 61, Cambridge Univ. Press, Cambridge, 1999.
  • M. Duflo, Caractères des groupes et algèbres de Lie résolubles, Ann. Sci. École Norm. Sup. (4) 3 (1970), 23--74.
  • —, Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Sci. École Norm. Sup. (4) 10 (1977), 265--288.
  • M. Emerton, On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms, Invent. Math. 164 (2006), 1--84.
  • —, Locally analytic vectors in representations of locally $p$-adic analytic groups, to appear in Mem. Amer. Math. Soc., preprint.
  • C. T. FéAux De Lacroix, Einige Resultate über die topologischen Darstellungen $p$-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem $p$-adischen Körper, Schriftenreihe Math. Inst. Univ. Münster 3. Ser. 23, Univ. Münster, Münster 1999.
  • J. Fresnel and M. Van Der Put, Rigid Analytic Geometry and Its Applications, Progr. Math. 218, Birkhäuser, Boston, 2004.
  • H. Frommer, The locally analytic principal series of split reductive groups, preprint, 2003.
  • A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 1955, no. 16.
  • A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique, III: Étude cohomologique des faisceaux cohérents, I, Inst. Hautes Études Sci. Publ. Math. 11 (1961).
  • R. Kiehl, Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie, Invent. Math. 2 (1967), 256--273.
  • U. KöPf, Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen, Schr. Math. Inst. Univ. Münster (2) 7 (1974).
  • A. M. Robert, A Course in $p$-Adic Analysis, Grad. Texts in Math. 198, Springer, New York, 2000.
  • P. Schneider, Nonarchimedean Functional Analysis, Springer Monogr. Math., Springer, Berlin, 2002.
  • —, $p$-Adische Analysis, lecture notes, Universität Münster, Münster, 2001.
  • P. Schneider and J. Teitelbaum, $p$-adic Fourier theory, Doc. Math. 6 (2001), 447--481.
  • —, Locally analytic distributions and $p$-adic representation theory, with applications to GL$_2$, J. Amer. Math. Soc. 15 (2002), 443--468.
  • —, ``$p$-adic boundary values'' in Cohomologies $p$-adiques et applications arithmétiques, I, Astérisque 278, Soc. Math. France, Montrouge, 2002, 51--125.; Correction in Cohomologies $p$-adiques et applications arithmétiques, III, Astérisque 295, Soc. Math. France, Montrouge, 2004, 291--299. ;
  • —, Algebras of $p$-adic distributions and admissible representations, Invent. Math. 153 (2003), 145--196.
  • —, Duality for admissible locally analytic representations, Represent. Theory 9 (2005), 297--326.
  • K.-Y. C. Sit, On bounded elements of linear algebraic groups, Trans. Amer. Math. Soc. 209 (1975), 185--198.