Duke Mathematical Journal
- Duke Math. J.
- Volume 135, Number 2 (2006), 395-413.
Random symmetric matrices are almost surely nonsingular
Kevin P. Costello, Terence Tao, and Van Vu
Abstract
Let denote a random symmetric (-matrix, whose upper-diagonal entries are independent and identically distributed (i.i.d.) Bernoulli random variables (which take values and with probability ). We prove that is nonsingular with probability for any fixed . The proof uses a quadratic version of Littlewood-Offord-type results concerning the concentration functions of random variables and can be extended for more general models of random matrices
Article information
Source
Duke Math. J., Volume 135, Number 2 (2006), 395-413.
Dates
First available in Project Euclid: 17 October 2006
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1161093270
Digital Object Identifier
doi:10.1215/S0012-7094-06-13527-5
Mathematical Reviews number (MathSciNet)
MR2267289
Zentralblatt MATH identifier
1110.15020
Subjects
Primary: 15A52
Secondary: 05D40: Probabilistic methods
Citation
Costello, Kevin P.; Tao, Terence; Vu, Van. Random symmetric matrices are almost surely nonsingular. Duke Math. J. 135 (2006), no. 2, 395--413. doi:10.1215/S0012-7094-06-13527-5. https://projecteuclid.org/euclid.dmj/1161093270