Duke Mathematical Journal
- Duke Math. J.
- Volume 129, Number 1 (2005), 39-61.
Heegaard Floer homology and contact structures
Peter Ozsváth and Zoltán Szabó
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Abstract
Given a contact structure on a closed, oriented three-manifold , we describe an invariant that takes values in the three-manifold's Floer homology . This invariant vanishes for overtwisted contact structures and is nonzero for Stein-fillable ones. The construction uses Giroux's interpretation of contact structures in terms of open-book decompositions.
Article information
Source
Duke Math. J., Volume 129, Number 1 (2005), 39-61.
Dates
First available in Project Euclid: 15 July 2005
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1121448863
Digital Object Identifier
doi:10.1215/S0012-7094-04-12912-4
Mathematical Reviews number (MathSciNet)
MR2153455
Zentralblatt MATH identifier
1083.57042
Subjects
Primary: 57R58: Floer homology
Secondary: 53D10: Contact manifolds, general
Citation
Ozsváth, Peter; Szabó, Zoltán. Heegaard Floer homology and contact structures. Duke Math. J. 129 (2005), no. 1, 39--61. doi:10.1215/S0012-7094-04-12912-4. https://projecteuclid.org/euclid.dmj/1121448863
References
- Y. Eliashberg, Classification of overtwisted contact structures on $3$-manifolds, Invent. Math. 98 (1989), 623--637. Mathematical Reviews (MathSciNet): MR1022310
Digital Object Identifier: doi:10.1007/BF01393840
Zentralblatt MATH: 0684.57012 - --. --. --. --., ``Filling by holomorphic discs and its applications'' in Geometry of Low-Dimensional Manifolds (Durham, U.K., 1989), London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press, Cambridge, 1990, 45--67. Mathematical Reviews (MathSciNet): MR1171908
- --. --. --. --., A few remarks about symplectic filling, Geom. Topol. 8 (2004), 277--293. Mathematical Reviews (MathSciNet): MR2023279
Digital Object Identifier: doi:10.2140/gt.2004.8.277
Zentralblatt MATH: 1067.53070 - J. B. Etnyre, On symplectic fillings, Algebr. Geom. Topol. 4 (2004), 73--80. Mathematical Reviews (MathSciNet): MR2023278
- E. Giroux, ``Géométrie de contact: de la dimension trois vers les dimensions supérieures'' in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 405--414. Mathematical Reviews (MathSciNet): MR1957051
- R. E. Gompf and A. I. Stipsicz, $4$-Manifolds and Kirby Calculus, Grad. Stud. Math. 20, Amer. Math. Soc., Providence, 1999. Mathematical Reviews (MathSciNet): MR1707327
- J. W. Gray, Some global properties of contact structures, Ann. of Math. (2) 69 (1959), 421--450. Mathematical Reviews (MathSciNet): MR0112161
Digital Object Identifier: doi:10.2307/1970192
JSTOR: links.jstor.org - M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307--347.
- P. B. Kronheimer and T. S. Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997), 209--255. Mathematical Reviews (MathSciNet): MR1474156
Digital Object Identifier: doi:10.1007/s002220050183
Zentralblatt MATH: 0892.53015 - --. --. --. --., Scalar curvature and the Thurston norm, Math. Res. Lett. 4 (1997), 931--937. Mathematical Reviews (MathSciNet): MR1492131
- P. Lisca and A. I. Stipsicz, Ozsváth-Szabó invariants and tight contact three-manifolds, I, Geom. Topol. 8 (2004), 925--945.
- --------, Ozsváth-Szabó invariants and tight contact three-manifolds, II, preprint.arXiv: math.SG/0404136
- P. Ozsváth and Z. Szabó, Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003), 225--254. Mathematical Reviews (MathSciNet): MR1988285
Digital Object Identifier: doi:10.2140/gt.2003.7.225
Zentralblatt MATH: 1130.57303 - --. --. --. --., Holomorphic disks and genus bounds, Geom. Topol. 8 (2004), 311--334. Mathematical Reviews (MathSciNet): MR2023281
Digital Object Identifier: doi:10.2140/gt.2004.8.311
Zentralblatt MATH: 1056.57020 - --. --. --. --., Holomorphic disks and knot invariants, Adv. Math. 186 (2004), 58--116. Mathematical Reviews (MathSciNet): MR2065507
Digital Object Identifier: doi:10.1016/j.aim.2003.05.001
Zentralblatt MATH: 1062.57019 - --. --. --. --., Holomorphic disks and three-manifold invariants: Properties and applications, Ann. of Math (2) 159 (2004), 1159--1245. Mathematical Reviews (MathSciNet): MR2113020
Digital Object Identifier: doi:10.4007/annals.2004.159.1159
Zentralblatt MATH: 1081.57013
JSTOR: links.jstor.org - --. --. --. --., Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math (2) 159 (2004), 1027--1158..Mathematical Reviews (MathSciNet): MR2113019
Digital Object Identifier: doi:10.4007/annals.2004.159.1027
Zentralblatt MATH: 1073.57009
JSTOR: links.jstor.org - --. --. --. --., Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004), 1--34. Mathematical Reviews (MathSciNet): MR2031164
Digital Object Identifier: doi:10.1215/S0012-7094-04-12111-6
Project Euclid: euclid.dmj/1072058748
Zentralblatt MATH: 1059.57018 - --------, Holomorphic triangles and invariants for smooth four-manifolds, preprint.arXiv: math.SG/0110169
- J. A. Rasmussen, Floer homology and knot complements, Ph.D. dissertation, Harvard University, Cambridge, 2003.arXiv: math.GT/0306378
- W. P. Thurston and H. E. Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975), 345--347. Mathematical Reviews (MathSciNet): MR0375366
Digital Object Identifier: doi:10.2307/2040160
JSTOR: links.jstor.org
Zentralblatt MATH: 0312.53028 - I. Torisu, Convex contact structures and fibered links in $3$-manifolds, Internat. Math. Res. Notices 2000, no. 9, 441--454. Mathematical Reviews (MathSciNet): MR1756943
Digital Object Identifier: doi:10.1155/S1073792800000246
Zentralblatt MATH: 0978.53133

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Stein fillable contact $3$–manifolds and positive open books of genus one
Lisca, Paolo, Algebraic & Geometric Topology, 2014 - Spectral order for contact manifolds with convex boundary
Juhász, András and Kang, Sungkyung, Algebraic & Geometric Topology, 2018 - Dehn surgery, rational open books and knot Floer homology
Hedden, Matthew and Plamenevskaya, Olga, Algebraic & Geometric Topology, 2013
- Stein fillable contact $3$–manifolds and positive open books of genus one
Lisca, Paolo, Algebraic & Geometric Topology, 2014 - Spectral order for contact manifolds with convex boundary
Juhász, András and Kang, Sungkyung, Algebraic & Geometric Topology, 2018 - Dehn surgery, rational open books and knot Floer homology
Hedden, Matthew and Plamenevskaya, Olga, Algebraic & Geometric Topology, 2013 - On the Transverse Invariant for Bindings of Open Books
Vela–Vick, David Shea, Journal of Differential Geometry, 2011 - Contact structures on plumbed 3-manifolds
Karakurt, Çağrı, Kyoto Journal of Mathematics, 2014 - Holomorphic open book decompositions
Abbas, Casim, Duke Mathematical Journal, 2011 - On symplectic fillings
Etnyre, John B, Algebraic & Geometric Topology, 2004 - Tight contact structures and genus one fibered knots
Baldwin, John A, Algebraic & Geometric Topology, 2007 - A hierarchy of local symplectic filling obstructions for contact 3-manifolds
Wendl, Chris, Duke Mathematical Journal, 2013 - Planar open books with four binding components
Lekili, Yankı, Algebraic & Geometric Topology, 2011