Duke Mathematical Journal

Semisimple characters for p-adic classical groups

Shaun Stevens

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let G be a unitary, symplectic, or orthogonal group over a non-Archimedean local field of residual characteristic different from 2, considered as the fixed-point subgroup in a general linear group $\widetilde{G}$ of an involution. Following [8] and [12], we generalize the notion of a semisimple character for $\widetilde{G}$ and for G. In particular, following the formalism of [4], we show that these semisimple characters have certain functorial properties. Finally, we show that any positive level supercuspidal representation of G contains a semisimple character.

Article information

Duke Math. J., Volume 127, Number 1 (2005), 123-173.

First available in Project Euclid: 4 March 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 22E50: Representations of Lie and linear algebraic groups over local fields [See also 20G05]


Stevens, Shaun. Semisimple characters for p -adic classical groups. Duke Math. J. 127 (2005), no. 1, 123--173. doi:10.1215/S0012-7094-04-12714-9. https://projecteuclid.org/euclid.dmj/1109963912

Export citation


  • \lccL. Blasco, Description du dual admissible de $U(2,1)(F)$ par la théorie des types de C. Bushnell et P. Kutzko, Manuscripta Math. 107 (2002), 151–186.
  • \lccP. Broussous and B. Lemaire, Building of $\GL(m,D)$ and centralizers, Transform. Groups 7 (2002), 15–50.
  • \lccP. Broussous and S. Stevens, Buildings of classical groups and centralizers of Lie algebra elements, preprint.
  • \lccC. J. Bushnell and G. Henniart, Local tame lifting for $\GL(N)$, I: Simple characters, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 105–233.
  • ––––, Local Tame Lifting for $\GL(N)$, II: Wildly Ramified Supercuspidals, Astérisque 254, Soc. Math. France, Montrouge, 1999.
  • \lccC. J. Bushnell and P. C. Kutzko, The Admissible Dual of $\GL(N)$ via Compact Open Subgroups, Princeton Univ. Press, Princeton, 1993.
  • ––––, Smooth representations of reductive $p$-adic groups: Structure theory via types, Proc. London Math. Soc. (3) 77 (1998), 582–634.
  • ––––, Semisimple types in $\GL_{n}$, Compositio Math. 119 (1999), 53–97.
  • \lccG. Glauberman, Correspondences of characters for relatively prime operator groups, Canad. J. Math. 20 (1968), 1465–1488.
  • \lccV. Sécherre, Représentations lisses de $\GL(m,D)$, I: Caractères simples, Bull. Soc. Math. France 132 (2004), 327–396.
  • \lccS. Stevens, Double coset decompositions and intertwining, Manuscripta Math. 106 (2001), 349–364.
  • ––––, Intertwining and supercuspidal types for $p$-adic classical groups, Proc. London Math. Soc. (3) 83 (2001), 120–140.
  • ––––, Semisimple strata for $p$-adic classical groups, Ann. Sci. École Norm. Sup. (4) 35 (2002), 423–435.
  • ––––, Types and supercuspidal representations of $p$-adic symplectic groups, Ph.D. dissertation, King's College, London, 1998, http://www.mth.uea.ac.uk/~h008/research.html
  • \lccJ.-K. Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), 579–622.