Duke Mathematical Journal

Ramification of torsion points on curves with ordinary semistable Jacobian varieties

Akio Tamagawa

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let X be a proper, smooth, geometrically connected curve of genus g≥2 over a p-adically complete discrete valuation field K. By the Albanese morphism withrespect to a given K-rational point, the curve X can be embedded into its Jacobian variety J. Then, assuming that J has ordinary semistable reduction, we prove that the inertia group of K acts trivially on the set of torsion points of J which lie on X, under certain mild conditions. As an application, we prove that the modular curve X0(N) (N: a prime number greater than or equal to 23), embedded into its Jacobian variety by using a cusp, contains no torsion points other than the cusps (resp., the cusps and the Weierstrass points), if N∉{23,29,31,41,47,59,71} (resp., N∈{23,29,31,41,47,59,71}). This affirmatively answers a question posed by R. Coleman, B. Kaskel, and K. Ribet [CKR].

Article information

Source
Duke Math. J., Volume 106, Number 2 (2001), 281-319.

Dates
First available in Project Euclid: 13 August 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1092403917

Digital Object Identifier
doi:10.1215/S0012-7094-01-10623-6

Mathematical Reviews number (MathSciNet)
MR1813433

Zentralblatt MATH identifier
1010.14007

Subjects
Primary: 11G18: Arithmetic aspects of modular and Shimura varieties [See also 14G35]
Secondary: 11G15: Complex multiplication and moduli of abelian varieties [See also 14K22]

Citation

Tamagawa, Akio. Ramification of torsion points on curves with ordinary semistable Jacobian varieties. Duke Math. J. 106 (2001), no. 2, 281--319. doi:10.1215/S0012-7094-01-10623-6. https://projecteuclid.org/euclid.dmj/1092403917


Export citation

References

  • \lccM. Ayad, Points $S$-entiers des courbes elliptiques, Manuscripta Math. 76 (1992), 305–324.
  • \lccR. F. Coleman, Ramified torsion points on curves, Duke Math. J. 54 (1987), 615–640.
  • \lccR. F. Coleman, B. Kaskel, and K. A. Ribet, “Torsion points on $X_{0}(N)$” in Automorphic Forms, Automorphic Representations, and Arithmetic (Fort Worth, Texas, 1996), Proc. Sympos. Pure Math. 66, Part 1, Amer. Math. Soc., Providence, 1999, 27–49.
  • \lccR. F. Coleman, A. Tamagawa, and P. Tzermias, The cuspidal torsion packet on the Fermat curve, J. Reine Angew. Math. 496 (1998), 73–81.
  • \lccC. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Pure Appl. Math. 11, Interscience, New York, 1962.
  • \lccP. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109.
  • \lccA. Grothendieck, M. Raynaud, and D. S. Rim, eds., Groupes de monodromie en géométrie algébrique, I, Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA7 I), Lecture Notes in Math. 288, Springer, Berlin, 1972.
  • \lccY. Hasegawa and M. Shimura, Trigonal modular curves, Acta Arith. 88 (1999), 129–140.
  • \lccS. Iitaka, Algebraic Geometry: An Introduction to Birational Geometry of Algebraic Varieties, Grad. Texts in Math. 76, Springer, New York, 1982.
  • \lccB. Kaskel, The adelic representation associated to $X_0(37)$, Ph.D. dissertation, Univ. of California at Berkeley, 1996.
  • \lccS. L. Kleiman and D. Laksov, Another proof of the existence of special divisors, Acta Math. 132 (1974), 163–176.
  • \lccB. Mazur, Modular curves and the Eisenstein ideal, appendix by B. Mazur andM. Rapoport, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186.
  • ––––, Rational isogenies of prime degree, appendix by D. Goldfeld, Invent. Math. 44 (1978), 129–162.
  • \lccB. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), 1–61.
  • \lccA. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449–462.
  • \lccM. Raynaud, Spécialisation du foncteur de Picard, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 27–76.
  • ––––, Courbes sur une variété abélienne et points de torsion, Invent. Math. 71 (1983), 207–233.
  • \lccK. A. Ribet, On modular representations of $\Gal(\QQbar/\QQ)$ arising from modular forms, Invent. Math. 100 (1990), 431–476.
  • ––––, “Torsion points on $\JoN$ and Galois representations” in Arithmetic Theory of Elliptic Curves (Cetraro, Italy, 1997), Lecture Notes in Math. 1716, Springer, Berlin, 1999, 145–166.
  • \lccJ.-P. Serre, Sur les représentations modulaires de degré $2$ de $\Gal(\QQbar/\QQ)$, Duke Math. J. 54 (1987), 179–230.
  • \lccJ. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, New York, 1986.
  • \lccJ. Tate, “The non-existence of certain Galois extensions of $\QQ$ unramified outside $2$” in Arithmetic Geometry (Tempe, Ariz., 1993), Contemp. Math. 174, Amer. Math. Soc., Providence, 1994, 153–156.
  • \lccJ. Tate and F. Oort, Group schemes of prime order, Ann. Sci. École Norm. Sup. (4) 3 (1970), 1–21.