Duke Mathematical Journal

Flops of G-Hilb and equivalences of derived categories by variation of GIT quotient

Alastair Craw and Akira Ishii

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

For a finite subgroup G⊂SL(3,ℂ), Bridgeland, King, and Reid [BKR] proved that the moduli space of G-clusters is a crepant resolution of the quotient ℂ3/G . This paper considers the moduli spaces $\mathcal{M}$θ, introduced by Kronheimer and further studied by Sardo Infirri, which coincide with G-Hilb for a particular choice of geometric invariant theory (GIT) parameter θ. For G Abelian, we prove that every projective crepant resolution of ℂ3/G is isomorphic to $\mathcal{M}$θ for some parameter θ. The key step is the description of GIT chambers in terms of the K-theory of the moduli space via the appropriate Fourier-Mukai transform. We also uncover explicit equivalences between the derived categories of moduli $\mathcal{M}$θ for parameters lying in adjacent GIT chambers.

Article information

Source
Duke Math. J., Volume 124, Number 2 (2004), 259-307.

Dates
First available in Project Euclid: 5 August 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1091735976

Digital Object Identifier
doi:10.1215/S0012-7094-04-12422-4

Mathematical Reviews number (MathSciNet)
MR2078369

Zentralblatt MATH identifier
1082.14009

Subjects
Primary: 14E15 14F05 18E30 14L24

Citation

Craw, Alastair; Ishii, Akira. Flops of G -Hilb and equivalences of derived categories by variation of GIT quotient. Duke Math. J. 124 (2004), no. 2, 259--307. doi:10.1215/S0012-7094-04-12422-4. https://projecteuclid.org/euclid.dmj/1091735976


Export citation

References

  • \lccA. Bondal \and D. Orlov, Semiorthogonal decomposition for algebraic varieties, preprint.
  • \lccT. Bridgeland, A. King, \and M. Reid, The McKay correspondence as an equivalence of derived categories. J. Amer. Math. Soc. 14 (2001), 535–554.
  • \lccR. Buchweitz \and H. Flenner, A semiregularity map for modules and applications to deformations, Compositio Math. 137 (2003), 135–210.
  • \lccA. Craw, An explicit construction of the McKay correspondence for (A)-Hilb (\mathbbC^3), preprint.
  • ––––, The McKay correspondence and representations of the McKay quiver, Ph.D. dissertation, University of Warwick, Coventry, United Kingdom, 2001, http://www.math.sunysb.edu/, craw/pubs/
  • \lccA. Craw \and M. Reid, How to calculate (A)-Hilb (\mathbbC^3), Séminaires et Congrès 6 (2002), 129–154.
  • \lccM. R. Douglas, B. Greene, \and D. R. Morrison, Orbifold resolution by D-branes, Nuclear Phys. B 506 (1997), 84–106.
  • \lccM. R. Douglas \and G. Moore, D-branes, quivers, and ALE instantons, preprint.
  • \lccW. Fulton, Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1998.
  • \lccA. Grothendieck, Revêtements étales et groupe fondamental, Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA1), Lecture Notes in Math. 224, Springer, Berlin, 1971.
  • ––––, Techniques de construction et thèorémes d'existence en géométrie algebrique, IV: Les schémas de Hilbert, Astérisque 6 (1995), 249–276, Séminaire Bourbaki 1995, exp. no. 221.
  • \lccR. P. Horja, Derived category automorphisms from mirror symmetry, to appear in Duke Math. J., preprint.
  • \lccD. Huybrechts \and M. Lehn, The Geometry of Moduli Spaces of Sheaves, Aspects of Mathematics E31, Vieweg, Braunschweig, Germany, 1997.
  • \lccY. Ito \and H. Nakajima, McKay correspondence and Hilbert schemes in dimension three, Topology 39 (2000), 1155–1191.
  • \lccM. M. Kapranov, “Chow quotients of Grassmannians, I” in I. M. Gel'fand Seminar, Adv. Soviet. Math. 16, Part 2, Amer. Math. Soc., Providence, 1993, 29–110.
  • \lccA. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), 515–530.
  • \lccP. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), 665–683.
  • \lccM. Maruyama, “On a family of algebraic vector bundles” in Number Theory, Algebraic Geometry and Commutative Algebra, in Honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, 95–146.
  • \lccI. Nakamura, Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001), 757–779.
  • \lccM. Reid, “McKay correspondence” in Proceedings of Algebraic Geometry Symposium (Kinosaki, Japan, 1996), ed. T. Katsura, 1997, 14–41; preprint.
  • \lccA. V. Sardo-Infirri [Sardo Infirri], Resolutions of orbifold singularities and the transportation problem on the McKay quiver, preprint.
  • \lccP. Seidel \and R. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), 37–108.
  • \lccB. Szendrői, “Diffeomorphisms and families of Fourier-Mukai transforms in mirror symmetry” in Applications of Algebraic Geometry to Coding Theory, Physics and Computation (Eilat, Israel, 2001), NATO Sci. Ser. II Math. Phys. Chem. 36, Kluwer Acad. Publ., Dordrecht., 2001, 317–337.
  • \lccM. Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996), 691–723.
  • \lccP. Wilson, The Kähler cone on Calabi-Yau threefolds, Invent. Math. 108 (1992), 561–584.