Duke Mathematical Journal

Local rigidity of hyperbolic 3-manifolds after Dehn surgery

Kevin P. Scannell

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

It is well known that some lattices in ${\rm SO}(n,1)$ can be nontrivially deformed when included in ${\rm SO}(n+1,1)$ (e.g., via bending on a totally geodesic hypersurface); this contrasts with the (super) rigidity of higher rank lattices. M. Kapovich recently gave the first examples of lattices in ${\rm SO}(3,1)$ which are locally rigid in ${\rm SO}(4,1)$ by considering closed hyperbolic $3$-manifolds obtained by Dehn filling on hyperbolic two-bridge knots. We generalize this result to Dehn filling on a more general class of one-cusped finite volume hyperbolic $3$-manifolds, allowing us to produce the first examples of closed hyperbolic $3$-manifolds which contain embedded quasi-Fuchsian surfaces but are locally rigid in ${\rm SO}(4,1)$.

Article information

Source
Duke Math. J., Volume 114, Number 1 (2002), 1-14.

Dates
First available in Project Euclid: 18 June 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1087575354

Digital Object Identifier
doi:10.1215/S0012-7094-02-11411-2

Mathematical Reviews number (MathSciNet)
MR1915033

Zentralblatt MATH identifier
1025.57019

Subjects
Primary: 57M50: Geometric structures on low-dimensional manifolds
Secondary: 22E40: Discrete subgroups of Lie groups [See also 20Hxx, 32Nxx] 57N16: Geometric structures on manifolds [See also 57M50]

Citation

Scannell, Kevin P. Local rigidity of hyperbolic 3-manifolds after Dehn surgery. Duke Math. J. 114 (2002), no. 1, 1--14. doi:10.1215/S0012-7094-02-11411-2. https://projecteuclid.org/euclid.dmj/1087575354


Export citation

References

  • C. C. Adams, Hyperbolic $3$-manifolds with two generators, Comm. Anal. Geom. 4 (1996), 181--206.
  • B. N. Apanasov, ``Nontriviality of Teichmüller space for Kleinian group in space'' in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (Stony Brook, N.Y., 1978), ed. I. Kra and B. Maskit, Ann. of Math. Stud. 97, Princeton Univ. Press, Princeton, 1981, 21--31.
  • --. --. --. --., Deformations of conformal structures on hyperbolic manifolds, J. Differential Geom. 35 (1992), 1--20.
  • B. N. Apanasov and A. V. Tetenov, The existence of nontrivial quasiconformal deformations of Kleinian groups in space (in Russian), Dokl. Akad. Nauk SSSR 239 (1978), no. 1, 14--17.; English translation in Soviet Math. Dokl. 19 (1998), 242--245.
  • --. --. --. --., ``Deformations of hyperbolic structures along surfaces with boundary and pleated surfaces'' in Low-Dimensional Topology (Knoxville, Tenn., 1992), ed. K. Johannson, Conf. Proc. Lecture Notes Geom. Topology 3, Internat. Press, Cambridge, Mass., 1994, 1--14.
  • M. Culler and P. B. Shalen, Varieties of group representations and splittings of $3$-manifolds, Ann. of Math. (2) 117 (1983), 109--146.
  • H. Garland and M. S. Raghunathan, Fundamental domains for lattices in (R-)rank $1$ semisimple Lie groups, Ann. of Math. (2) 92 (1970), 279--326.
  • W. M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math. 54 (1984), 200--225.
  • --. --. --. --., Projective structures with Fuchsian holonomy, J. Differential Geom. 25 (1987), 297--326.
  • --. --. --. --., ``Geometric structures on manifolds and varieties of representations'' in Geometry of Group Representations (Boulder, Colo., 1987), ed. W. M. Goldman and A. R. Magid, Contemp. Math. 74, Amer. Math. Soc., Providence, 1988, 169--198.
  • C. D. Hodgson, Degeneration and regeneration of geometric structures on three-manifolds, Ph.D. dissertation, Princeton University, Princeton, 1986.
  • C. D. Hodgson and S. P. Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998), 1--59.
  • D. L. Johnson and J. J. Millson, ``Deformation spaces associated to compact hyperbolic manifolds'' in Discrete Groups in Geometry and Analysis: Papers in Honor of G. Mostow on His Sixtieth Birthday (New Haven, Conn., 1984), ed. R. Howe, Progr. Math. 67, Birkhäuser, Boston, 1987, 48--106.
  • M. È. Kapovich, Conformal structures with Fuchsian holonomy, Soviet Math. Dokl. 38 (1989), 14--17.
  • --. --. --. --., ``Deformation spaces of flat conformal structures'' in Proceedings of the Second Soviet-Japan Joint Symposium of Topology (Khabarovsk, Russia, 1989), Questions Answers Gen. Topology 8, Sympos. Gen. Topology, Osaka, Japan, 1990, 253--264.
  • --. --. --. --., Deformations of representations of fundamental groups of three-dimensional manifolds, Siberian Math. J. 32 (1991), 33--38.
  • --. --. --. --., ``Flat conformal structures on $3$-manifolds (survey)'' in Proceedings of the International Conference on Algebra (Novosibirsk, Russia, 1989), Part 1, ed. L. A. Bokut, Yu. L. Ershov, and A. I. Kostrikin, Contemp. Math. 131, Amer. Math. Soc., Providence, 1992, 551--570.
  • --. --. --. --., Deformations of representations of discrete subgroups of $\SO(3,1)$, Math. Ann. 299 (1994), 341--354.
  • --------, Hyperbolic Manifolds and Discrete Groups, Progr. Math. 183, Birkhäuser, Boston, 2001. \CMP1 792 613
  • --------, Topological aspects of Kleinian groups in several dimensions, preprint, 1992, http://math.utah.edu/~kapovich/eprints.html
  • M. È. Kapovich and J. J. Millson, On the deformation theory of representations of fundamental groups of compact hyperbolic $3$-manifolds, Topology 35 (1996), 1085--1106.
  • C. Kourouniotis, Deformations of hyperbolic structures, Math. Proc. Cambridge Philos. Soc. 98 (1985), 247--261.
  • J. Lafontaine, Modules de structures conformes et cohomologie de groupes discrets, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), 655--658.
  • M. T. Lozano and J. H. Przytycki, Incompressible surfaces in the exterior of a closed $3$-braid, I: Surfaces with horizontal boundary components, Math. Proc. Cambridge Philos. Soc. 98 (1985), 275--299.
  • W. W. Menasco and A. W. Reid, ``Totally geodesic surfaces in hyperbolic link complements'' in Topology '90 (Columbus, Ohio, 1990), ed. B. N. Apanasov, W. D. Neumann, A. W. Reid, and L. C. Siebenmann, Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin, 1992, 215--226.
  • L. Mosher, ``Examples of quasi-geodesic flows on hyperbolic $3$-manifolds'' in Topology '90 (Columbus, Ohio, 1990), ed. B. N. Apanasov, W. D. Neumann, A. W. Reid, and L. C. Siebenmann, Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin, 1992, 227--241.
  • W. D. Neumann and D. Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985), 307--332.
  • K. P. Scannell, Infinitesimal deformations of some $\SO(3,1)$ lattices, Pacific J. Math. 194 (2000), 455--464.
  • S. P. Tan, Deformations of flat conformal structures on a hyperbolic $3$-manifold, J. Differential Geom. 37 (1993), 161--176.
  • W. P. Thurston, The geometry and topology of three-manifolds, notes, Princeton University, Princeton, 1980, http://msri.org/publications/books/gt3m
  • A. Weil, Remarks on the cohomology of groups, Ann. of Math. (2) 80 (1964), 149--157.
  • H. Whitney, Elementary structure of real algebraic varieties, Ann. of Math. (2) 66 (1957), 545--556.