Duke Mathematical Journal

The signature of a toric variety

Naichung Conan Leung and Victor Reiner

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We identify a combinatorial quantity (the alternating sum of the h-vector) defined for any simple polytope as the signature of a toric variety. This quantity was introduced by R. Charney and M. Davis in their work, which in particular showed that its nonnegativity is closely related to a conjecture of H. Hopf on the Euler characteristic of a nonpositively curved manifold.

We prove positive (or nonnegative) lower bounds for this quantity under geometric hypotheses on the polytope and, in particular, resolve a special case of their conjecture. These hypotheses lead to ampleness (or weaker conditions) for certain line bundles on toric divisors, and then the lower bounds follow from calculations using the Hirzebruch signature formula.

Moreover, we show that under these hypotheses on the polytope, the ith L-class of the corresponding toric variety is (−1)i times an effective class for any i.

Article information

Source
Duke Math. J., Volume 111, Number 2 (2002), 253-286.

Dates
First available in Project Euclid: 18 June 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1087575041

Digital Object Identifier
doi:10.1215/S0012-7094-02-11123-5

Mathematical Reviews number (MathSciNet)
MR1882135

Zentralblatt MATH identifier
1062.14067

Subjects
Primary: 14M25: Toric varieties, Newton polyhedra [See also 52B20]
Secondary: 52B05: Combinatorial properties (number of faces, shortest paths, etc.) [See also 05Cxx] 52B20: Lattice polytopes (including relations with commutative algebra and algebraic geometry) [See also 06A11, 13F20, 13Hxx]

Citation

Leung, Naichung Conan; Reiner, Victor. The signature of a toric variety. Duke Math. J. 111 (2002), no. 2, 253--286. doi:10.1215/S0012-7094-02-11123-5. https://projecteuclid.org/euclid.dmj/1087575041


Export citation

References

  • E. Babson, L. Billera, and C. Chan, Neighborly cubical spheres and a cubical lower bound conjecture, Israel J. Math. 102 (1997), 297--315.
  • W. N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Math. and Math. Phys. 32, Stechert-Hafner, New York, 1964.
  • L. J. Billera and A. Björner, ``Face numbers of polytopes and complexes'' in Handbook of Discrete and Computational Geometry, ed. J. E. Goodman and J. O'Rourke, CRC Press Ser. Discrete Math. Appl., CRC Press, Boca Raton, Fla., 1997, 291--310.
  • L. J. Billera and C. W. Lee, A proof of the sufficiency of McMullen's conditions for $f$-vectors of simplicial convex polytopes, J. Combin. Theory Ser. A 31 (1981), 237--255.
  • A. Björner, Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. Math. 52 (1984), 173--212.
  • R. Charney and M. Davis, The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold, Pacific J. Math. 171 (1995), 117--137.
  • D. A. Cox and S. Katz, Mirror Symmetry and Algebraic Geometry, Math. Surveys Monogr. 68, Amer. Math. Soc., Providence, 1999.
  • H. S. M. Coxeter, Regular Polytopes, 3d ed., Dover, New York, 1973.
  • V. I. Danilov, The geometry of toric varieties (in Russian), Uspekhi Mat. Nauk 33, no. 2 (1978), 85--134., 247; English translation in Russian Math. Surveys 33, no. 2 (1978), 97--154.
  • M. W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. (2) 117 (1983), 293--324.
  • --. --. --. --., Some aspherical manifolds, Duke Math. J. 55 (1987), 105--139.
  • --------, ``Nonpositive curvature and reflection groups'' to appear in Handbook of Geometric Topology, ed. R. Daverman and R. Sher, Elsevier.
  • M. W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991), 417--451.
  • M. W. Davis, T. Januszkiewicz, and R. Scott, Nonpositive curvature of blow-ups, Selecta Math. (N.S.) 4 (1998), 491--547.
  • M. W. Davis and B. Okun, Vanishing theorems and conjectures for the $L^2$-homology of right-angled Coxeter groups, Geom. Topol. 5 (2001), 7--74., http://maths.warwick.ac.uk/gt/GTVol5/paper2.abs.html
  • J. A. de Loera, Triangulations of polytopes and computational algebra, Ph.D. dissertation, Cornell Univ., Ithaca, N.Y., 1995.
  • P. H. Edelman and V. Reiner, $H$-shellings and $h$-complexes, Adv. Math. 106 (1994), 36--64.
  • W. Fulton, Introduction to Toric Varieties, Ann. of Math. Stud. 131, Princeton Univ. Press, Princeton, 1993.
  • --------, Intersection Theory, 2d ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1998.
  • B. Grünbaum, Convex Polytopes, Pure Appl. Math. 16, Wiley, New York, 1967.
  • V. Guillemin, Moment Maps and Combinatorial Invariants of Hamiltonian $T^n$-Spaces, Progr. Math. 122, Birkhäuser, Boston, 1994.
  • R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.
  • F. Hirzebruch, Topological Methods in Algebraic Geometry, Classics Math., Springer, Berlin, 1995.
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Stud. Adv. Math. 29, Cambridge Univ. Press, Cambridge, England, 1990.
  • G. Kalai, On low-dimensional faces that high-dimensional polytopes must have, Combinatorica 10 (1990), 271--280.
  • T. Kawasaki, The signature theorem for $V$-manifolds, Topology 17 (1978), 75--83.
  • S. Kobayashi, Differential Geometry of Complex Vector Bundles, Publ. Math. Soc. Japan 15, Princeton Univ. Press, Princeton; Kanô Memorial Lectures 5, Iwanami Shoten, Tokyo, 1987.
  • C. Lee, The associahedron and triangulations of the $n$-gon, European J. Combin. 10 (1989), 551--560.
  • P. McMullen, On simple polytopes, Invent. Math. 113 (1993), 419--444.
  • J. W. Milnor and J. D. Stasheff, Characteristic Classes, Ann. of Math. Stud. 76, Princeton Univ. Press, Princeton, 1974.
  • T. Oda, Convex Bodies and Algebraic Geometry: An Introduction to the Theory of Toric Varieties, Ergeb. Math. Grenzgeb. (3) 15, Springer, Berlin, 1988.
  • V. Reiner, The distribution of descents and length in a Coxeter group, Electron. J. Combin. 2 (1995), R25, http://combinatorics.org/Volume_2/volume2.html#R25
  • R. P. Stanley, The number of faces of a simplicial convex polytope, Adv. Math. 35 (1980), 236--238.
  • --. --. --. --., ``Generalized $H$-vectors, intersection cohomology of toric varieties, and related results'' in Commutative Algebra and Combinatorics (Kyoto, Japan, 1985), Adv. Stud. Pure Math. 11, North-Holland, Amsterdam, 1987, 187--213.
  • È. B. Vinberg, Hyperbolic groups of reflections (in Russian), Uspekhi Mat. Nauk. 40, no. 1 (1985), 29--66., 255; English translation in Russian Math. Surveys 40, no. 1 (1985), 31--75.
  • G. M. Ziegler, Lectures on Polytopes, Grad. Texts in Math. 152, Springer, New York, 1995.