Duke Mathematical Journal

The spectral bound and principal eigenvalues of Schrödinger operators on Riemannian manifolds

El Maati Ouhabaz

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Given a complete Riemannian manifold $M$ and a Schrödinger operator $-\Delta+m$ acting on $L^p(M)$, we study two related problems on the spectrum of $-\Delta+m$. The first one concerns the positivity of the $L^2$-spectral lower bound $s(-\Delta+m)$. We prove that if $M$ satisfies $L^2$-Poincaré inequalities and a local doubling property, then $s(-\Delta+m)>0$, provided that $m$ satisfies the mean condition

$\inf\substack {p\in M}\frac {1}{|B(p, r)|}\int \sb{B(p,r )}m(x)dx>0$

for some $r>0$. We also show that this condition is necessary under some additional geometrical assumptions on $M$.

The second problem concerns the existence of an $L^p$-principal eigenvalue, that is, a constant $\lambda\geq 0$ such that the eigenvalue problem $\Delta u=\lambda mu$ and equation above] has a positive solution $u\in L^p(M)$. We give conditions in terms of the growth of the potential $m$ and the geometry of the manifold $M$ which imply the existence of $L^p$-principal eigenvalues.

Finally, we show other results in the cases of recurrent and compact manifolds.

Article information

Duke Math. J., Volume 110, Number 1 (2001), 1-35.

First available in Project Euclid: 18 June 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 58J50: Spectral problems; spectral geometry; scattering theory [See also 35Pxx]
Secondary: 35P15: Estimation of eigenvalues, upper and lower bounds 47F05: Partial differential operators [See also 35Pxx, 58Jxx] (should also be assigned at least one other classification number in section 47) 58J05: Elliptic equations on manifolds, general theory [See also 35-XX]


Ouhabaz, El Maati. The spectral bound and principal eigenvalues of Schrödinger operators on Riemannian manifolds. Duke Math. J. 110 (2001), no. 1, 1--35. doi:10.1215/S0012-7094-01-11011-9. https://projecteuclid.org/euclid.dmj/1087574811

Export citation


  • W. Allegretto, Principal eigenvalues for indefinite-weight elliptic problems in $\mathbbR^n$, Proc. Amer. Math. Soc. 116 (1992), 701--706.
  • W. Arendt and C. J. K. Batty, Exponential stability of a diffusion equation with absorption, Differential Integral Equations 6 (1993), 1009--1024.
  • --. --. --. --., The spectral function and principal eigenvalues for Schrödinger operators, Potential Anal. 7 (1997), 415--436.
  • T. Aubin, Nonlinear Analysis on Manifolds: Monge-Ampère Equations, Grundlehren Math. Wiss. 252, Springer, New York, 1982.
  • R. Brooks, A relation between growth and the spectrum of the Laplacian, Math. Z. 178 (1981), 501--508.
  • K. J. Brown, C. Cosner, and J. Fleckinger, Principal eigenvalues for problems with indefinite weight function on $\mathbbR^N$, Proc. Amer. Math. Soc. 109 (1990), 147--155.
  • K. J. Brown, D. Daners, and J. López-Gómez, Change of stability for Schrödinger semigroups, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 827--846.
  • P. Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), 213--230.
  • G. Carron, $L^2$-cohomologie et inégalités de Sobolev, Math. Ann. 314 (1999), 613--639.
  • J. Cheeger, M. Gromov, and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982), 15--53.
  • T. Coulhon and L. Saloff-Coste, Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993), 293--314.
  • D. Daners, Principal eigenvalues for some periodic-parabolic operators on $\mathbbR^N$ and related topics, J. Differential Equations 121 (1995), 293--313.
  • E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Math. 92, Cambridge Univ. Press, Cambridge, 1989.
  • P. G. Doyle, On the bass note of a Schottky group, Acta Math. 160 (1988), 249--284.
  • X. T. Duong and D. W. Robinson, Semigroup kernels, Poisson bounds, and holomorphic functional calculus, J. Funct. Anal. 142 (1996), 89--128.
  • M. Fukushima, Y. Ōshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter Stud. Math. 19, de Gruyter, Berlin, 1994.
  • S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, 2d ed., Universitext, Springer, Berlin, 1990.
  • A. A. Grigor'yan, Stochastically complete manifolds and summable harmonic functions, Math. USSR-Izv. 33 (1989), 425--432.
  • --. --. --. --., The heat equation on noncompact Riemannian manifolds, Math. USSR-Sb. 72 (1992), 47--77.
  • P. Hajłasz and P. Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 1211--1215.
  • R. Hempel and J. Voigt, The spectrum of a Schrödinger operator in $L_p(\mathbbR^\nu)$ is $p$-independent, Comm. Math. Phys. 104 (1986), 243--250.
  • P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations 5 (1980), 999--1030.
  • D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 (1986), 503--523.
  • T. Kato, Perturbation Theory for Linear Operators, Classics Math., Springer, Berlin, 1995.
  • P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153--201.
  • P. Maheux and L. Saloff-Coste, Analyse sur les boules d'un opérateur sous-elliptique, Math. Ann. 303 (1995), 713--740.
  • I. McGillivray and E.-M. Ouhabaz, ``Existence of bounded invariant solutions for absorption semigroups'' in Differential Equations, Asymptotic Analysis, and Mathematical Physics (Potsdam, Germany, 1996), Math. Res. 100, Akademie, Berlin, 1997, 226--241.
  • G. Metafune and D. Pallara, On the location of the essential spectrum of Schrödinger operators, preprint, 2000.
  • E. M. Ouhabaz, On the spectral function of some higher order elliptic or degenerate-elliptic operators, Semigroup Forum 57 (1998), 305--314.
  • E. M. Ouhabaz and P. Stollmann, Stability of the essential spectrum of second-order complex elliptic operators, J. Reine Angew. Math. 500 (1998), 113--126.
  • E.-M. Ouhabaz, P. Stollmann, K.-T. Sturm, and J. Voigt, The Feller property for absorption semigroups, J. Funct. Anal. 138 (1996), 351--378.
  • Y. Pinchover, On criticality and ground states of second order elliptic equations, II, J. Differential Equations 87 (1990), 353--364.
  • M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, New York, 1978.
  • G. Rozenblum and M. Solomyak, On principal eigenvalues for indefinite problems in Euclidean space, Math. Nachr. 192 (1998), 205--223.
  • L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices 1992, 27--38.
  • --. --. --. --., Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom. 36 (1992), 417--450.
  • M. Schechter, Spectra of Partial Differential Operators, 2d ed., North-Holland Ser. Appl. Math. Mech. 14, North-Holland, Amsterdam, 1986.
  • M. A. Shubin, ``Spectral theory of elliptic operators on noncompact manifolds'' in Méthodes semi-classiques (Nantes, France, 1991), Vol. 1, Astérisque 207, Soc. Math. France, Montrouge, 1992, 5, 35--108.
  • B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 447--526., ; Erratum, Bull. Amer. Math. Soc. (N.S.) 11 (1984), 426.
  • R. S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal. 52 (1983), 48--79.
  • K.-T. Sturm, On the $L^p$-spectrum of uniformly elliptic operators on Riemannian manifolds, J. Funct. Anal. 118 (1993), 442--453.
  • A. Tertikas, Critical phenomena in linear elliptic problems, J. Funct. Anal. 154 (1998), 42--66.
  • N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and Geometry on Groups, Cambridge Tracts in Math. 100, Cambridge Univ. Press, Cambridge, 1992.
  • J. Voigt, Absorption semigroups, their generators, and Schrödinger semigroups, J. Funct. Anal. 67 (1986), 167--205.
  • F.-Y. Wang, Functional inequalities for empty essential spectrum, J. Funct. Anal. 170 (2000), 219--245.