Duke Mathematical Journal

Heights of vector bundles and the fundamental group scheme of a curve

Carlo Gasbarri

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $X$ be a scheme; the fundamental group scheme of $X$, when it exists, is a profinite group scheme that classifies principal homogeneous spaces under finite flat group schemes over $X$. We generalize the construction of the fundamental group scheme given by M. Nori [No] to the case when $X$ is a reduced flat scheme over a Dedekind scheme. We prove that if $X$ is a curve over a $p$-adic field having good reduction, then the prime-to-$p$ part of the fundamental group scheme of $X$ has only finitely many rational representations in ${\rm GL}\sb N$. In the second part of the paper, using tools from Arakelov theory, we construct an intrinsic height on the moduli space of semistable vector bundles (of fixed rank and degree) over a curve defined over a number field. We finally prove that the height of vector bundles over an arithmetic surface $X$ coming from representations of the fundamental group scheme is upper bounded; so we deduce that there are only finitely many isomorphism classes of rational representations of the fundamental group scheme of $X$.

Article information

Source
Duke Math. J., Volume 117, Number 2 (2003), 287-311.

Dates
First available in Project Euclid: 26 May 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1085598371

Digital Object Identifier
doi:10.1215/S0012-7094-03-11723-8

Mathematical Reviews number (MathSciNet)
MR1971295

Zentralblatt MATH identifier
1026.11057

Subjects
Primary: 14G40: Arithmetic varieties and schemes; Arakelov theory; heights [See also 11G50, 37P30]
Secondary: 11G30: Curves of arbitrary genus or genus = 1 over global fields [See also 14H25] 11G50: Heights [See also 14G40, 37P30]

Citation

Gasbarri, Carlo. Heights of vector bundles and the fundamental group scheme of a curve. Duke Math. J. 117 (2003), no. 2, 287--311. doi:10.1215/S0012-7094-03-11723-8. https://projecteuclid.org/euclid.dmj/1085598371


Export citation

References

  • S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron Models, Ergeb. Math. Grenzgeb. (3) 21, Springer, Berlin, 1990.
  • J.-B. Bost, Semi-stability and heights of cycles, Invent. Math. 118 (1994), 223--253.
  • --. --. --. --., Intrinsic heights of stables varieties and abelian varieties, Duke Math. J. 82 (1996), 21--70.
  • --. --. --. --., Potential theory and Lefschetz theorems for arithmetic surfaces, Ann. Sci. École Norm. Sup. (4) 32 (1999), 241--312.
  • P. Deligne, Le déterminant de la cohomologie, Contemp. Math. 67, Amer. Math. Soc., Providence, 1987.
  • C. Gasbarri, Hauteurs canoniques sur l'espace de modules des fibrés stables sur une courbe algébrique, Bull. Soc. Math. France 125 (1997), 457--491.
  • --. --. --. --., Heights and geometric invariant theory, Forum Math. 12 (2000), 135--153.
  • H. Gillet and C. Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 93--174.
  • --. --. --. --., An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), 473--543.
  • A. Grothendieck, Fondements de la géométrie algébrique (extracted from Séminaire Bourbaki 1957--62), Sécretariat mathématique, Paris, 1962.
  • A. Grothendieck and J. A. Dieudonné, Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, III, Inst. Hautes Études Sci. Publ. Math. 28 (1966).
  • A. Grothendieck and M. Raynaud, Revêtements étales et groupe fondamental, Séminaire de Géometrié Algébrique du Bois-Marie 1960/61 (SGA 1), Lecture Notes in Math. 224, Springer, Berlin, 1971.
  • Y. Ihara, ``Horizontal divisors on arithmetic surfaces associated with Belyĭ uniformizations'' in The Grothendieck Theory of Dessins d'Enfants (Luminy, France, 1993), London Math. Soc. Lecture Note Ser. 200, Cambridge Univ. Press, Cambridge, 1994, 245--254.
  • D. Mumford, Abelian Varieties, Tata Inst. Fund. Res. Stud. Math. 5, Oxford Univ. Press, London, 1970.
  • D. Mumford and J. Fogarty, Geometric Invariant Theory, 2d ed., Ergeb. Math. Grenzgeb. (2) 34, Springer, Berlin, 1982.
  • J. P. Murre, Lectures on an Introduction to Grothendieck's Theory of the Fundamental Group, Tata Inst. Fundam. Res. Lect. Math. 40, Tata Inst. Fund. Res., Bombay, 1967.
  • P. E. Newstead, Introduction to Moduli Problems and Orbit Spaces, Tata Inst. Fund. Res. Lectures on Math. and Phys. 51, Narosa, New Delhi, 1978.
  • M. V. Nori, On the representations of the fundamental group, Compositio Math. 33 (1976), 29--41.
  • M. Raynaud, Schémas en groupe de type $(p,\ldots ,p)$, Bull. Soc. Math. France 102 (1974), 241--280.
  • C. Soulé, A vanishing theorem on arithmetic surfaces, Invent. Math. 116 (1994), 577--599.
  • --. --. --. --., Successive minima on arithmetic varieties, Compositio Math. 96 (1995), 85--98.
  • L. Szpiro, ``Degrés, intersections, hauteurs'' in Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell (Paris, 1983/84), ed. L Szpiro, Astérisque 127, Soc. Math. France, Montrouge, 1985, 11--28. \CMP801 917
  • A. Weil, Généralisation des fonctions abéliennes, J. Math. Pures Appl. (9) 17 (1938), 47--87.