Duke Mathematical Journal

Conditions for nonnegative curvature on vector bundles and sphere bundles

Kristopher Tapp

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


This paper addresses J. Cheeger and D. Gromoll's question about which vector bundles admit a complete metric of nonnegative curvature, and it relates their question to the issue of which sphere bundles admit a metric of positive curvature. We show that any vector bundle that admits a metric of nonnegative curvature must admit a connection, a tensor, and a metric on the base space, which together satisfy a certain differential inequality. On the other hand, a slight sharpening of this condition is sufficient for the associated sphere bundle to admit a metric of positive curvature. Our results sharpen and generalize M. Strake and G. Walschap's conditions under which a vector bundle admits a connection metric of nonnegative curvature.

Article information

Duke Math. J., Volume 116, Number 1 (2003), 77-101.

First available in Project Euclid: 26 May 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20]
Secondary: 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60]


Tapp, Kristopher. Conditions for nonnegative curvature on vector bundles and sphere bundles. Duke Math. J. 116 (2003), no. 1, 77--101. doi:10.1215/S0012-7094-03-11613-0. https://projecteuclid.org/euclid.dmj/1085598236

Export citation