Duke Mathematical Journal

The pointwise Fatou theorem and its converse for positive pluriharmonic functions

Wade Ramey and David Ullrich

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Duke Math. J., Volume 49, Number 3 (1982), 655-675.

First available in Project Euclid: 20 February 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 32A25: Integral representations; canonical kernels (Szego, Bergman, etc.)
Secondary: 31C10: Pluriharmonic and plurisubharmonic functions [See also 32U05]


Ramey, Wade; Ullrich, David. The pointwise Fatou theorem and its converse for positive pluriharmonic functions. Duke Math. J. 49 (1982), no. 3, 655--675. doi:10.1215/S0012-7094-82-04934-1. https://projecteuclid.org/euclid.dmj/1077315383

Export citation


  • [1] P. Fatou, Series trigonometriques et series de Taylor, Acta Mathematica 30 (1906), 335.
  • [2] L. L. Helms, Introduction to potential theory, Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience A Division of John Wiley & Sons, New York-London-Sydney, 1969.
  • [3] A. Korányi, Harmonic functions on Hermitian hyperbolic space, Trans. Amer. Math. Soc. 135 (1969), 507–516.
  • [4] L. H. Loomis, The converse of the Fatou theorem for positive harmonic functions, Trans. Amer. Math. Soc. 53 (1943), 239–250.
  • [5] W. Rudin, Tauberian theorems for positive harmonic functions, Nederl. Akad. Wetensch. Indag. Math. 40 (1978), no. 3, 376–384.
  • [6] W. Rudin, Function theory in the unit ball of $\bf C\spn$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241, Springer-Verlag, New York, 1980.
  • [7] E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Princeton University Press, Princeton, N.J., 1972.