Duke Mathematical Journal

Distribution function estimates for Marcinkiewicz integrals and differentiability

Sagun Chanillo and Richard L. Wheeden

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 49, Number 3 (1982), 517-619.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077315379

Digital Object Identifier
doi:10.1215/S0012-7094-82-04930-4

Mathematical Reviews number (MathSciNet)
MR672497

Zentralblatt MATH identifier
0599.42010

Subjects
Primary: 42B25: Maximal functions, Littlewood-Paley theory

Citation

Chanillo, Sagun; Wheeden, Richard L. Distribution function estimates for Marcinkiewicz integrals and differentiability. Duke Math. J. 49 (1982), no. 3, 517--619. doi:10.1215/S0012-7094-82-04930-4. https://projecteuclid.org/euclid.dmj/1077315379


Export citation

References

  • [1] D. L. Burkholder, R. F. Gundy, and M. L. Silverstein, A maximal function characterization of the class $H\spp$, Trans. Amer. Math. Soc. 157 (1971), 137–153.
  • [2] D. L. Burkholder and R. F. Gundy, Distribution function inequalities for the area integral, Studia Math. 44 (1972), 527–544.
  • [3] A.-P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171–225.
  • [4] A. P. Calderón, Estimates for singular integral operators in terms of maximal functions, Studia Math. 44 (1972), 563–582.
  • [5] R. DeVore and R. Sharpley, Maximal functions measuring smoothness, to appear.
  • [6] C. L. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9–36.
  • [7] A. B. E. Gatto, J. R. Jiménez, and C. Segovia, On the solutions of the equation $\Delta^mF=f$ for $f\in H^p$, to appear in Conference on Harmonic Analysis in Honor of Antoni Zygmund, Wadsworth International, California, 1982.
  • [8] I. I. Hirschman, Jr., Fractional integration, Amer. J. Math. 75 (1953), 531–546.
  • [9] J. Marcinkiewicz, Sur quelques intégrals du type de Dini, Ann. Soc. Polonaise Math. 17 (1938), 42–50.
  • [10] C. Segovia and R. L. Wheeden, On certain fractional area integrals, J. Math. Mech. 19 (1969/1970), 247–262.
  • [11] E. M. Stein and A. Zygmund, On the differentiability of functions, Studia Math. 23 (1963/1964), 247–283.
  • [12] E. M. Stein and A. Zygmund, On the fractional differentiability of functions, Proc. London Math. Soc. (3) 14a (1965), 249–264.
  • [13] E. M. Stein, The characterization of functions arising as potentials, Bull. Amer. Math. Soc. 67 (1961), 102–104.
  • [14] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.
  • [15] D. Waterman, On an integral of Marcinkiewicz, Trans. Amer. Math. Soc. 91 (1959), 129–138.
  • [16] G. Weiss, lecture notes.
  • [17] R. L. Wheeden, On the $n$-dimensional integral of Marcinkiewicz, J. Math. Mech. 14 (1965), 61–70.
  • [18] A. Zygmund, A theorem on generalized derivatives, Bull. Amer. Math. Soc. 49 (1943), 917–923.
  • [19] A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170–204.