Duke Mathematical Journal
- Duke Math. J.
- Volume 49, Number 3 (1982), 517-619.
Distribution function estimates for Marcinkiewicz integrals and differentiability
Sagun Chanillo and Richard L. Wheeden
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Article information
Source
Duke Math. J., Volume 49, Number 3 (1982), 517-619.
Dates
First available in Project Euclid: 20 February 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077315379
Digital Object Identifier
doi:10.1215/S0012-7094-82-04930-4
Mathematical Reviews number (MathSciNet)
MR672497
Zentralblatt MATH identifier
0599.42010
Subjects
Primary: 42B25: Maximal functions, Littlewood-Paley theory
Citation
Chanillo, Sagun; Wheeden, Richard L. Distribution function estimates for Marcinkiewicz integrals and differentiability. Duke Math. J. 49 (1982), no. 3, 517--619. doi:10.1215/S0012-7094-82-04930-4. https://projecteuclid.org/euclid.dmj/1077315379
References
- [1] D. L. Burkholder, R. F. Gundy, and M. L. Silverstein, A maximal function characterization of the class $H\spp$, Trans. Amer. Math. Soc. 157 (1971), 137–153.Mathematical Reviews (MathSciNet): MR43:527
Zentralblatt MATH: 0223.30048
Digital Object Identifier: doi:10.2307/1995838 - [2] D. L. Burkholder and R. F. Gundy, Distribution function inequalities for the area integral, Studia Math. 44 (1972), 527–544.
- [3] A.-P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171–225.
- [4] A. P. Calderón, Estimates for singular integral operators in terms of maximal functions, Studia Math. 44 (1972), 563–582.
- [5] R. DeVore and R. Sharpley, Maximal functions measuring smoothness, to appear.Mathematical Reviews (MathSciNet): MR727820
- [6] C. L. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9–36.Mathematical Reviews (MathSciNet): MR41:2468
Zentralblatt MATH: 0188.42601
Digital Object Identifier: doi:10.1007/BF02394567 - [7] A. B. E. Gatto, J. R. Jiménez, and C. Segovia, On the solutions of the equation $\Delta^mF=f$ for $f\in H^p$, to appear in Conference on Harmonic Analysis in Honor of Antoni Zygmund, Wadsworth International, California, 1982.
- [8] I. I. Hirschman, Jr., Fractional integration, Amer. J. Math. 75 (1953), 531–546.Mathematical Reviews (MathSciNet): MR15,119b
Zentralblatt MATH: 0050.29104
Digital Object Identifier: doi:10.2307/2372502
JSTOR: links.jstor.org - [9] J. Marcinkiewicz, Sur quelques intégrals du type de Dini, Ann. Soc. Polonaise Math. 17 (1938), 42–50.Zentralblatt MATH: 0020.01101
- [10] C. Segovia and R. L. Wheeden, On certain fractional area integrals, J. Math. Mech. 19 (1969/1970), 247–262.
- [11] E. M. Stein and A. Zygmund, On the differentiability of functions, Studia Math. 23 (1963/1964), 247–283.
- [12] E. M. Stein and A. Zygmund, On the fractional differentiability of functions, Proc. London Math. Soc. (3) 14a (1965), 249–264.Mathematical Reviews (MathSciNet): MR31:1340
Zentralblatt MATH: 0154.05501
Digital Object Identifier: doi:10.1112/plms/s3-14A.1.249 - [13] E. M. Stein, The characterization of functions arising as potentials, Bull. Amer. Math. Soc. 67 (1961), 102–104.Mathematical Reviews (MathSciNet): MR23:A1051
Zentralblatt MATH: 0127.32002
Digital Object Identifier: doi:10.1090/S0002-9904-1961-10517-X
Project Euclid: euclid.bams/1183523864 - [14] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.
- [15] D. Waterman, On an integral of Marcinkiewicz, Trans. Amer. Math. Soc. 91 (1959), 129–138.Mathematical Reviews (MathSciNet): MR21:2715
Zentralblatt MATH: 0087.06301
Digital Object Identifier: doi:10.2307/1993149
JSTOR: links.jstor.org - [16] G. Weiss, lecture notes.
- [17] R. L. Wheeden, On the $n$-dimensional integral of Marcinkiewicz, J. Math. Mech. 14 (1965), 61–70.
- [18] A. Zygmund, A theorem on generalized derivatives, Bull. Amer. Math. Soc. 49 (1943), 917–923.Mathematical Reviews (MathSciNet): MR5,175b
Zentralblatt MATH: 0061.11307
Digital Object Identifier: doi:10.1090/S0002-9904-1943-08059-7
Project Euclid: euclid.bams/1183505538 - [19] A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170–204.Mathematical Reviews (MathSciNet): MR5,230b
Zentralblatt MATH: 0061.13902
Digital Object Identifier: doi:10.2307/1990189
JSTOR: links.jstor.org

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- A rough multiple Marcinkiewicz integral along continuous surfaces
Wu, Huoxiong, Tohoku Mathematical Journal, 2007 - $L^{p}$ bounds for a class of Marcinkiewicz integral operators
Al-Salman, Ahmad, Journal of Integral Equations and Applications, 2019 - On Differentiable Functionals
Vaart, Aad Van Der, The Annals of Statistics, 1991
- A rough multiple Marcinkiewicz integral along continuous surfaces
Wu, Huoxiong, Tohoku Mathematical Journal, 2007 - $L^{p}$ bounds for a class of Marcinkiewicz integral operators
Al-Salman, Ahmad, Journal of Integral Equations and Applications, 2019 - On Differentiable Functionals
Vaart, Aad Van Der, The Annals of Statistics, 1991 - CMO estimates for higher-order commutators of integral operators with rough kernels
ZHANG, Xiaojin, FU, Zunwei, and LIU, Zongguang, Hokkaido Mathematical Journal, 2009 - Second order ancillary: A differential view from continuity
Fraser, Ailana M., Fraser, D.A.S., and Staicu, Ana-Maria, Bernoulli, 2010 - The continuity of commutators on Herz-type Hardy spaces with variable exponent
Wang, Hongbin, Kyoto Journal of Mathematics, 2016 - A sharp estimate for multilinear Marcinkiewicz integral operator
Liu, Lanzhe, Asian Journal of Mathematics, 2005 - Symmetric integrals do not have the Marcinkiewicz property
Thomson, B. S. and , V. A. Skvortsov,, Real Analysis Exchange, 1996 - Absolute Continuity in Partial Differential Equations
Emamizadeh, Behrouz and Farjudian, Amin, Real Analysis Exchange, 2014 - Efficient Bayesian estimation and uncertainty quantification in ordinary differential equation models
Bhaumik, Prithwish and Ghosal, Subhashis, Bernoulli, 2017