Duke Mathematical Journal

Semicharacters on connected Lie groups

Niels Vigand Pedersen

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 48, Number 4 (1981), 729-754.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077314928

Digital Object Identifier
doi:10.1215/S0012-7094-81-04840-7

Mathematical Reviews number (MathSciNet)
MR782574

Zentralblatt MATH identifier
0527.22009

Subjects
Primary: 22D25: $C^*$-algebras and $W^*$-algebras in relation to group representations [See also 46Lxx]
Secondary: 46L99: None of the above, but in this section

Citation

Pedersen, Niels Vigand. Semicharacters on connected Lie groups. Duke Math. J. 48 (1981), no. 4, 729--754. doi:10.1215/S0012-7094-81-04840-7. https://projecteuclid.org/euclid.dmj/1077314928


Export citation

References

  • [1] N. Bourbaki, Éléments de mathématique. Fasc. XX. Livre I: Théorie des ensembles. Chapitre 3: Ensembles ordonnés cardinaux, nombres entiers, Seconde édition, revue et augmentée. Actualités Sci. Indust., No. 1243, Hermann, Paris, 1963.
  • [2] N. Bourbaki, Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie, Actualités Sci. Ind. No. 1285. Hermann, Paris, 1960.
  • [3] C. Chevalley, Théorie des groupes de Lie, Hermann, Paris, 1967.
  • [4] F. Combes, Poids associé à une algèbre hilbertienne à gauche, Compositio Math. 23 (1971), 49–77.
  • [5] J. Dixmier, Traces sur les $C\sp*$-algèbres, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 1, 219–262.
  • [6] J. Dixmier, Les $C\sp\ast$-algèbres et leurs représentations, Deuxième édition. Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969.
  • [7] J. Dixmier, Sur la représentation régulière d'un groupe localement compact connexe, Ann. Sci. École Norm. Sup. (4) 2 (1969), 423–436.
  • [8] M. Duflo and C. C. Moore, On the regular representation of a nonunimodular locally compact group, J. Functional Analysis 21 (1976), no. 2, 209–243.
  • [9] E. G. Effros, A decomposition theory for representations of $C\sp\ast$-algebras. , Trans. Amer. Math. Soc. 107 (1963), 83–106.
  • [10] E. G. Effros and F. Hahn, Locally compact transformation groups and $C\sp\ast$- algebras, Memoirs of the American Mathematical Society, No. 75, American Mathematical Society, Providence, R.I., 1967.
  • [11] J. Glimm, Locally compact transformation groups, Trans. Amer. Math. Soc. 101 (1961), 124–138.
  • [12] R. Godement, Mémoire sur la théorie des caractères dans les groupes localement compacts unimodulaires, J. Math. Pures Appl. (9) 30 (1951), 1–110.
  • [13] P. Green, The local structure of twisted covariance algebras, Acta Math. 140 (1978), no. 3-4, 191–250.
  • [14] P. Green, The structure of imprimitivity algebras, J. Funct. Anal. 36 (1980), no. 1, 88–104.
  • [15] G. Hochschild, The structure of Lie groups, Holden-Day Inc., San Francisco, 1965.
  • [16] G. W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265–311.
  • [17] C. C. Moore, Square integrable primary representations, Pacific J. Math. 70 (1977), no. 2, 413–427.
  • [18] G. K. Pedersen, $C\sp\ast$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1979.
  • [19] G. K. Pedersen and M. Takesaki, The Radon-Nikodym theorem for von Neumann algebras, Acta Math. 130 (1973), 53–87.
  • [20] N. V. Pedersen, Semicharacters and solvable Lie groups, Math. Ann. 247 (1980), no. 3, 191–244.
  • [21] N. V. Pedersen, Duality for induced representations and for induced weights, Preprint, University of Copenhagen.
  • [22] N. V. Pedersen, On certain $KMS$-weights on $C^\ast$-crossed products, Proc. Lond. Math. Soc. (to appear).
  • [23]1 L. Pukánszky, Sur la représentation régulière des groupes de Lie résolubles connexes, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A1172–A1173.
  • [23]2 L. Pukánszky, Sur la représentation régulière des groupes de Lie résolubles connexes, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A1077–A1079.
  • [24] L. Pukanszky, Unitary representations of solvable Lie groups, Ann. Sci. École Norm. Sup. (4) 4 (1971), 457–608.
  • [25] L. Pukanszky, Action of algebraic groups of automorphisms on the dual of a class of type $\rm I$ groups, Ann. Sci. École Norm. Sup. (4) 5 (1972), 379–395.
  • [26] L. Pukanszky, Characters of connected Lie groups, Acta Math. 133 (1974), 81–137.
  • [27] J. Rosenberg, Square-integrable factor representations of locally compact groups, Trans. Amer. Math. Soc. 237 (1978), 1–33.
  • [28] I. E. Segal, An extension of Plancherel's formula to separable unimodular groups, Ann. of Math. (2) 52 (1950), 272–292.
  • [29] C. E. Sutherland, Direct integral theory for weights, and the Plancherel formula, Bull. Amer. Math. Soc. 80 (1974), 456–461.