Duke Mathematical Journal

On intertwining operators for GLN(F), F a nonarchimedean local field

Philip Kutzko and David Manderscheid

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 57, Number 1 (1988), 275-293.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077306858

Digital Object Identifier
doi:10.1215/S0012-7094-88-05712-2

Mathematical Reviews number (MathSciNet)
MR952235

Zentralblatt MATH identifier
0665.22006

Subjects
Primary: 22E50: Representations of Lie and linear algebraic groups over local fields [See also 20G05]
Secondary: 11S37: Langlands-Weil conjectures, nonabelian class field theory [See also 11Fxx, 22E50] 22E35: Analysis on $p$-adic Lie groups

Citation

Kutzko, Philip; Manderscheid, David. On intertwining operators for $\mathrm{GL}_N(F)$, $F$ , $F$ a nonarchimedean local field. Duke Math. J. 57 (1988), no. 1, 275--293. doi:10.1215/S0012-7094-88-05712-2. https://projecteuclid.org/euclid.dmj/1077306858


Export citation

References

  • [B] C. Bushnell, Hereditary orders, Gauss sums and supercuspidal representations of $\mathrm GL_N$, J. Reine Angew. Math. 375/376 (1987), 184–210.
  • [BF] C. Bushnell and A. Fröhlich, Non-abelian congruence Gauss sums and $p$-adic simple algebras, Proc. London Math. Soc. (3) 50 (1985), no. 2, 207–264.
  • [C] H. Carayol, Representations cuspidales du groupe lineaire, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 2, 191–225.
  • [H] R. Howe, Tamely ramified supercuspidal representations of $\mathrm Gl_n$, Pacific J. Math. 73 (1977), no. 2, 437–460.
  • [HM] R. Howe and A. Moy, Harish-Chandra homomorphisms for $p$-adic groups, CBMS Regional Conference Series in Mathematics, vol. 59, Amer. Math. Soc., Providence, 1985.
  • [HW] G. Hardy and H. Wright, The Theory of Numbers, Oxford University Press, London, 1938.
  • [I] N. Iwahori, Generalized Tits system (Bruhat decompostition) on $p$-adic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Proc. Symp. Pure Math., vol. 9, Amer. Math. Soc., Providence, R.I., 1966, pp. 71–83.
  • [K1] P. Kutzko, On the supercuspidal representations of $\rm GL\sb N$ and other $p$-adic groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 853–861.
  • [K2] P. Kutzko, Towards a classification of the supercuspidal representations of $\mathrm GL_N$, London J. Math., to appear.
  • [M] A. Moy, Local constants and the tame Langlands correspondence, Amer. J. Math. 108 (1986), no. 4, 863–930.
  • [S] J. P. Serre, Local Fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York, 1979.
  • [W] J. L. Waldspurger, Algèbres de Hecke et induites de représentations cuspidales, pour $\mathrm GL(N)$, J. Reine Angew. Math. 370 (1986), 127–191.