Duke Mathematical Journal

Modification de Nash et invariants numériques d’une surface normale

M. Vaquie

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 57, Number 1 (1988), 69-84.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077306849

Digital Object Identifier
doi:10.1215/S0012-7094-88-05703-1

Mathematical Reviews number (MathSciNet)
MR952226

Zentralblatt MATH identifier
0654.14020

Subjects
Primary: 32B30
Secondary: 14E15: Global theory and resolution of singularities [See also 14B05, 32S20, 32S45] 14J17: Singularities [See also 14B05, 14E15] 32C20: Normal analytic spaces

Citation

Vaquie, M. Modification de Nash et invariants numériques d’une surface normale. Duke Math. J. 57 (1988), no. 1, 69--84. doi:10.1215/S0012-7094-88-05703-1. https://projecteuclid.org/euclid.dmj/1077306849


Export citation

References

  • [B-F-MP] P. Baum, W. Fulton, and R. MacPherson, Riemann-Roch for singular varieties, Inst. Hautes Études Sci. Publ. Math. (1975), no. 45, 101–145.
  • [B-G] R. O. Buchweitz and G. M. Greuel, The Milnor number and deformations of complex curve singularities, Invent. Math. 58 (1980), no. 3, 241–281.
  • [Du] A. Dubson, Classes caractéristiques des variétés singulières, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 4, A237–A240.
  • [G] G. Gonzalez-Sprinberg, Une formule pour les singularités isolées de surfaces, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 10, A475–A478.
  • [L] H. Laufer, On $\mu$ for surface singularities, Several Complex Variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975), vol. 30, Amer. Math. Soc., Providence, R. I., 1977, pp. 45–49.
  • [Lê-T] D. T. Lê and B. Teissier, Variétés polaires locales et classes de Chern des variétés singulières, Ann. of Math. (2) 114 (1981), no. 3, 457–491.
  • [MP] R. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423–432.
  • [Mi] J. Milnor, Singular Points of Complex Hypersurfaces, Ann. of Math. Stud., no. 61, Princeton University Press, Princeton, New Jersey, 1968.
  • [Mo] M. Morales, Calcul de quelques invariants des singularités de surface normale, Knots, braids and singularities (Plans-sur-Bex, 1982), Monogr. Enseign. Math., vol. 31, Enseignement Math., Geneva, 1983, pp. 191–203.
  • [N] A. Nobile, Some properties of the Nash blowing-up, Pacific J. Math. 60 (1975), no. 1, 297–305.
  • [P1] R. Piene, Cycles polaires et classes de Chern pour les variétés projectives singulières, prépubl., Centre de Math., École Polytechnique, 1978.
  • [P2] R. Piene, Ideals associated to a desingularization, Algebraic Geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Math., vol. 732, Springer, Berlin, 1979, pp. 503–517.
  • [Ra] C. P. Ramanujam, On a geometric interpretation of multiplicity, Invent. Math. 22 (1973), 63–67.
  • [Re] M. Reid, Bogomolov's theorem $c_1^2\leq 4c_2$, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, pp. 623–642.
  • [S1] J. Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1976), no. 3, 229–257.
  • [S2] J. Steenbrink, Mixed Hodge structures associated with isolated singularities, Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 513–536.
  • [T] B. Teissier, Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972), Astérisque, vol. 7-8, Soc. Math. France, Paris, 1973, pp. 285–362.
  • [W] J. Wahl, Smoothings of normal surface singularities, Topology 20 (1981), no. 3, 219–246.