Duke Mathematical Journal

An analogue for harmonic functions of Kolmogorov’s law of the iterated logarithm

Rodrigo Bañuelos, Ivo Klemes, and Charles N. Moore

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 57, Number 1 (1988), 37-68.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077306848

Digital Object Identifier
doi:10.1215/S0012-7094-88-05702-X

Mathematical Reviews number (MathSciNet)
MR952225

Zentralblatt MATH identifier
0666.31002

Subjects
Primary: 42B25: Maximal functions, Littlewood-Paley theory
Secondary: 31A05: Harmonic, subharmonic, superharmonic functions 60F15: Strong theorems

Citation

Bañuelos, Rodrigo; Klemes, Ivo; Moore, Charles N. An analogue for harmonic functions of Kolmogorov’s law of the iterated logarithm. Duke Math. J. 57 (1988), no. 1, 37--68. doi:10.1215/S0012-7094-88-05702-X. https://projecteuclid.org/euclid.dmj/1077306848


Export citation

References

  • [1] J. M. Anderson and L. D. Pitt, Probabilistic behavior of functions in the Zygmund spaces $\Lambda^\ast$ and $\lambda^\ast$, preprint.
  • [2] R. Bañuelos, Brownian motion and area functions, Indiana Univ. Math. J. 35 (1986), no. 3, 643–668.
  • [3] R. Bañuelos and C. N. Moore, Some results in analysis related to the law of the iterated logarithm, Proc. Special Year in Analysis, University of Illinois, to appear.
  • [4] R. Bañuelos and C. N. Moore, Sharp estimates for the nontangential maximal function and the Lusin area function, to appear in Trans. Amer. Math. Soc.
  • [5] N. H. Bingham, Variants on the law of the iterated logarithm, Bull. London Math. Soc. 18 (1986), no. 5, 433–467.
  • [6]1 A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math. 16 (1975), 1–64.
  • [6]2 A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution. II, Advances in Math. 24 (1977), no. 2, 101–171.
  • [7] S.-Y. A. Chang, J. M. Wilson, and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), no. 2, 217–246.
  • [8] K. L. Chung, On the maximum partial sums of sequences of independent random variables, Trans. Amer. Math. Soc. 64 (1948), 205–233.
  • [9] K. L. Chung, A Course in Probability Theory, 2nd ed., Academic Press, New York-London, 1974.
  • [10] R. Durrett, Brownian motion and martingales in analysis, Wadsworth Mathematics Series, Wadsworth International Group, Belmont, CA, 1984.
  • [11] P. Erdös and I. S. Gál, On the law of the iterated logarithm. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17 (1955), 65–76, 77–84.
  • [12] J. B. Garnett, Bounded Analytic Functions, Pure and Applied Mathematics, vol. 96, Academic Press, New York, 1981.
  • [13] R. F. Gundy, The martingale version of a theorem of Marcinkiewicz and Zygmund, Ann. Math. Statist 38 (1967), 725–734.
  • [14] R. F. Gundy, The density of the area integral, Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) eds. W. Beckner, A. Calderón, R. Fefferman, and P. Jones, Wadsworth Math. Ser., Wadsworth, Belmont, California, 1983, pp. 138–149.
  • [15] R. F. Gundy and M. L. Silverstein, The density of the area integral in $\bf R\sp n+1\sb +$, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 1, 215–229.
  • [16] D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. in Math. 46 (1982), no. 1, 80–147.
  • [17] C. E. Kenig, Weighted $H\spp$ spaces on Lipschitz domains, Amer. J. Math. 102 (1980), no. 1, 129–163.
  • [18] H. Kesten, An iterated logarithm law for local time, Duke Math. J. 32 (1965), 447–456.
  • [19] N. Kolmogorov, Über des Gesetz des iterieten logarithmus, Math. Ann. 101 (1929), 126–139.
  • [20] N. G. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. (3) 51 (1985), no. 2, 369–384.
  • [21] C. N. Moore, Some applications of Cauchy integrals on curves, dissertation, University of California, Los Angeles, 1986.
  • [22] T. Murai and A. Uchiyama, Good $\lambda$ inequalities for the area integral and the nontangential maximal function, Studia Math. 83 (1986), no. 3, 251–262.
  • [23] W. Philipp and W. Stout, Almost sure invariance principles for partial sums of weakly dependent random variables, Mem. Amer. Math. Soc. 161 (1975), no. issue 2, 161, iv+140, American Mathematical Society, Providence, Rhode Island.
  • [24] W. Philipp and W. Stout, Invariance principles for martingales and sums of independent random variables, Math. Z. 192 (1986), no. 2, 253–264.
  • [25] P. Przytycki, On the law of iterated logarithm for Bloch functions, preprint.
  • [26] R. Salem and A. Zygmund, La loi du logarithme itéré pour les séries trigonométriques lacunaires, Bull. Sci. Math. (2) 74 (1950), 209–224.
  • [27] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, New Jersey, 1970.
  • [28] W. Stout, A martingale analogue of Kolmogorov's law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 15 (1970), 279–290.
  • [29] V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 211–226 (1964).
  • [30] S. Takahashi, Almost sure invariance principles for lacunary trigonometric series, Tôhoku Math. J. (2) 31 (1979), no. 4, 439–451.
  • [31] M. Weiss, The law of the iterated logarithm for lacunary trigonometric series. , Trans. Amer. Math. Soc. 91 (1959), 444–469.