Duke Mathematical Journal
- Duke Math. J.
- Volume 57, Number 1 (1988), 37-68.
An analogue for harmonic functions of Kolmogorov’s law of the iterated logarithm
Rodrigo Bañuelos, Ivo Klemes, and Charles N. Moore
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Article information
Source
Duke Math. J., Volume 57, Number 1 (1988), 37-68.
Dates
First available in Project Euclid: 20 February 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077306848
Digital Object Identifier
doi:10.1215/S0012-7094-88-05702-X
Mathematical Reviews number (MathSciNet)
MR952225
Zentralblatt MATH identifier
0666.31002
Subjects
Primary: 42B25: Maximal functions, Littlewood-Paley theory
Secondary: 31A05: Harmonic, subharmonic, superharmonic functions 60F15: Strong theorems
Citation
Bañuelos, Rodrigo; Klemes, Ivo; Moore, Charles N. An analogue for harmonic functions of Kolmogorov’s law of the iterated logarithm. Duke Math. J. 57 (1988), no. 1, 37--68. doi:10.1215/S0012-7094-88-05702-X. https://projecteuclid.org/euclid.dmj/1077306848
References
- [1] J. M. Anderson and L. D. Pitt, Probabilistic behavior of functions in the Zygmund spaces $\Lambda^\ast$ and $\lambda^\ast$, preprint.Mathematical Reviews (MathSciNet): MR1014871
Zentralblatt MATH: 0739.42007
Digital Object Identifier: doi:10.1112/plms/s3-59.3.558 - [2] R. Bañuelos, Brownian motion and area functions, Indiana Univ. Math. J. 35 (1986), no. 3, 643–668.Mathematical Reviews (MathSciNet): MR87k:60126
Zentralblatt MATH: 0624.60058
Digital Object Identifier: doi:10.1512/iumj.1986.35.35034 - [3] R. Bañuelos and C. N. Moore, Some results in analysis related to the law of the iterated logarithm, Proc. Special Year in Analysis, University of Illinois, to appear.
- [4] R. Bañuelos and C. N. Moore, Sharp estimates for the nontangential maximal function and the Lusin area function, to appear in Trans. Amer. Math. Soc.
- [5] N. H. Bingham, Variants on the law of the iterated logarithm, Bull. London Math. Soc. 18 (1986), no. 5, 433–467.Mathematical Reviews (MathSciNet): MR87k:60087
Zentralblatt MATH: 0633.60042
Digital Object Identifier: doi:10.1112/blms/18.5.433 - [6]1 A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math. 16 (1975), 1–64.Mathematical Reviews (MathSciNet): MR54:5736
Zentralblatt MATH: 0315.46037
Digital Object Identifier: doi:10.1016/0001-8708(75)90099-7 - [6]2 A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution. II, Advances in Math. 24 (1977), no. 2, 101–171.Mathematical Reviews (MathSciNet): MR56:9180
Zentralblatt MATH: 0355.46021
Digital Object Identifier: doi:10.1016/S0001-8708(77)80016-9 - [7] S.-Y. A. Chang, J. M. Wilson, and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), no. 2, 217–246.Mathematical Reviews (MathSciNet): MR87d:42027
Zentralblatt MATH: 0575.42025
Digital Object Identifier: doi:10.1007/BF02567411 - [8] K. L. Chung, On the maximum partial sums of sequences of independent random variables, Trans. Amer. Math. Soc. 64 (1948), 205–233.Mathematical Reviews (MathSciNet): MR10,132b
Zentralblatt MATH: 0032.17102
Digital Object Identifier: doi:10.2307/1990499
JSTOR: links.jstor.org - [9] K. L. Chung, A Course in Probability Theory, 2nd ed., Academic Press, New York-London, 1974.
- [10] R. Durrett, Brownian motion and martingales in analysis, Wadsworth Mathematics Series, Wadsworth International Group, Belmont, CA, 1984.
- [11] P. Erdös and I. S. Gál, On the law of the iterated logarithm. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17 (1955), 65–76, 77–84.
- [12] J. B. Garnett, Bounded Analytic Functions, Pure and Applied Mathematics, vol. 96, Academic Press, New York, 1981.
- [13] R. F. Gundy, The martingale version of a theorem of Marcinkiewicz and Zygmund, Ann. Math. Statist 38 (1967), 725–734.Mathematical Reviews (MathSciNet): MR35:6194
Zentralblatt MATH: 0153.20901
Digital Object Identifier: doi:10.1214/aoms/1177698865
Project Euclid: euclid.aoms/1177698865 - [14] R. F. Gundy, The density of the area integral, Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) eds. W. Beckner, A. Calderón, R. Fefferman, and P. Jones, Wadsworth Math. Ser., Wadsworth, Belmont, California, 1983, pp. 138–149.
- [15] R. F. Gundy and M. L. Silverstein, The density of the area integral in $\bf R\sp n+1\sb +$, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 1, 215–229.
- [16] D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. in Math. 46 (1982), no. 1, 80–147.Mathematical Reviews (MathSciNet): MR84d:31005b
Zentralblatt MATH: 0514.31003
Digital Object Identifier: doi:10.1016/0001-8708(82)90055-X - [17] C. E. Kenig, Weighted $H\spp$ spaces on Lipschitz domains, Amer. J. Math. 102 (1980), no. 1, 129–163.Mathematical Reviews (MathSciNet): MR81d:30060
Zentralblatt MATH: 0434.42024
Digital Object Identifier: doi:10.2307/2374173
JSTOR: links.jstor.org - [18] H. Kesten, An iterated logarithm law for local time, Duke Math. J. 32 (1965), 447–456.Mathematical Reviews (MathSciNet): MR31:2751
Zentralblatt MATH: 0132.12701
Digital Object Identifier: doi:10.1215/S0012-7094-65-03245-X
Project Euclid: euclid.dmj/1077375916 - [19] N. Kolmogorov, Über des Gesetz des iterieten logarithmus, Math. Ann. 101 (1929), 126–139.
- [20] N. G. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. (3) 51 (1985), no. 2, 369–384.Mathematical Reviews (MathSciNet): MR87d:30012
Zentralblatt MATH: 0573.30029
Digital Object Identifier: doi:10.1112/plms/s3-51.2.369 - [21] C. N. Moore, Some applications of Cauchy integrals on curves, dissertation, University of California, Los Angeles, 1986.
- [22] T. Murai and A. Uchiyama, Good $\lambda$ inequalities for the area integral and the nontangential maximal function, Studia Math. 83 (1986), no. 3, 251–262.
- [23] W. Philipp and W. Stout, Almost sure invariance principles for partial sums of weakly dependent random variables, Mem. Amer. Math. Soc. 161 (1975), no. issue 2, 161, iv+140, American Mathematical Society, Providence, Rhode Island.
- [24] W. Philipp and W. Stout, Invariance principles for martingales and sums of independent random variables, Math. Z. 192 (1986), no. 2, 253–264.Mathematical Reviews (MathSciNet): MR88c:60094
Zentralblatt MATH: 0601.60033
Digital Object Identifier: doi:10.1007/BF01179427 - [25] P. Przytycki, On the law of iterated logarithm for Bloch functions, preprint.
- [26] R. Salem and A. Zygmund, La loi du logarithme itéré pour les séries trigonométriques lacunaires, Bull. Sci. Math. (2) 74 (1950), 209–224.
- [27] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, New Jersey, 1970.
- [28] W. Stout, A martingale analogue of Kolmogorov's law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 15 (1970), 279–290.Mathematical Reviews (MathSciNet): MR45:2778
Zentralblatt MATH: 0209.49004
Digital Object Identifier: doi:10.1007/BF00533299 - [29] V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 211–226 (1964).Mathematical Reviews (MathSciNet): MR30:5379
Zentralblatt MATH: 0132.12903
Digital Object Identifier: doi:10.1007/BF00534910 - [30] S. Takahashi, Almost sure invariance principles for lacunary trigonometric series, Tôhoku Math. J. (2) 31 (1979), no. 4, 439–451.Mathematical Reviews (MathSciNet): MR81c:60041
Zentralblatt MATH: 0407.60022
Digital Object Identifier: doi:10.2748/tmj/1178229729
Project Euclid: euclid.tmj/1178229729 - [31] M. Weiss, The law of the iterated logarithm for lacunary trigonometric series. , Trans. Amer. Math. Soc. 91 (1959), 444–469.Mathematical Reviews (MathSciNet): MR21:7396
Zentralblatt MATH: 0143.28801
Digital Object Identifier: doi:10.2307/1993258
JSTOR: links.jstor.org

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Laws of the Iterated Logarithm for Permuted Random Variables and Regression Applications
Makowski, Gary G., The Annals of Statistics, 1973 - Comparison Theorems, Random Geometry and Some Limit Theorems for Empirical Processes
Ledoux, M. and Talagrand, M., The Annals of Probability, 1989 - Divided Differences, Square Functions, and a Law of the Iterated Logarithm
Nicolau, Artur, Real Analysis Exchange, 2018
- Laws of the Iterated Logarithm for Permuted Random Variables and Regression Applications
Makowski, Gary G., The Annals of Statistics, 1973 - Comparison Theorems, Random Geometry and Some Limit Theorems for Empirical Processes
Ledoux, M. and Talagrand, M., The Annals of Probability, 1989 - Divided Differences, Square Functions, and a Law of the Iterated Logarithm
Nicolau, Artur, Real Analysis Exchange, 2018 - The Borel–Cantelli Lemmas, Probability Laws and Kolmogorov
Complexity
Davie, George, The Annals of Probability, 2001 - On the Law of the Iterated Logarithm for Martingales
Fisher, Evan, The Annals of Probability, 1992 - Small time Chung-type LIL for Lévy processes
Aurzada, Frank, Döring, Leif, and Savov, Mladen, Bernoulli, 2013 - Rates of Convergence for the Functional LIL
Goodman, Victor and Kuelbs, James, The Annals of Probability, 1989 - Oscillation of Hölder Continuous Functions
Llorente, J. G. and Nicolau, A., Real Analysis Exchange, 2014 - On the Multivariate Law of the Iterated Logarithm
Berning, John A., The Annals of Probability, 1979 - Empirical processes in probabilistic number theory: the LIL for the discrepancy of $(n\sb k\omega)\bmod1$
Berkes, István, Philipp, Walter, and Tichy, Robert F., Illinois Journal of Mathematics, 2006