Duke Mathematical Journal

Mappings of three-dimensional CR manifolds and their holomorphic extension

M. S. Baouendi, S. R. Bell, and Linda Preiss Rothschild

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 56, Number 3 (1988), 503-530.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077306715

Digital Object Identifier
doi:10.1215/S0012-7094-88-05621-9

Mathematical Reviews number (MathSciNet)
MR948531

Zentralblatt MATH identifier
0655.32015

Subjects
Primary: 32H35: Proper mappings, finiteness theorems
Secondary: 32D15: Continuation of analytic objects 32F25

Citation

Baouendi, M. S.; Bell, S. R.; Rothschild, Linda Preiss. Mappings of three-dimensional CR manifolds and their holomorphic extension. Duke Math. J. 56 (1988), no. 3, 503--530. doi:10.1215/S0012-7094-88-05621-9. https://projecteuclid.org/euclid.dmj/1077306715


Export citation

References

  • [1] M. S. Baouendi, S. Bell, and L. P. Rothschild, CR mappings of finite multiplicity and extension of proper holomorphic mappings, Bull. Amer. Math. Soc. (N.S.) 16 (1987), no. 2, 265–270.
  • [2] M. S. Baouendi, H. Jacobowitz, and F. Treves, On the analyticity of CR mappings, Ann. of Math. (2) 122 (1985), no. 2, 365–400.
  • [3] M. S. Baouendi and L. P. Rothschild, Normal forms for generic manifolds and holomorphic extension of CR functions, J. Differential Geom. 25 (1987), no. 3, 431–467.
  • [4] M. S. Baouendi and F. Tréves, About the holomorphic extension of CR functions on real hypersurfaces in complex space, Duke Math. J. 51 (1984), no. 1, 77–107.
  • [5] E. Bedford and S. Bell, Proper self-maps of weakly pseudoconvex domains, Math. Ann. 261 (1982), no. 1, 47–49.
  • [6] E. Bedford and S. Bell, Extension of proper holomorphic mappings past the boundary, Manuscripta Math. 50 (1985), 1–10.
  • [7] Steven R. Bell, Analytic hypoellipticity of the $\bar \partial$-Neumann problem and extendability of holomorphic mappings, Acta Math. 147 (1981), no. 1-2, 109–116.
  • [8] S. Bell and D. Catlin, Boundary regularity of proper holomorphic mappings, Duke Math. J. 49 (1982), no. 2, 385–396.
  • [9] M. Derridj, Sur le prolongement d'applications holomorphes, Séminaire sur les équations aux dérivées partielles, 1985–1986, École Polytech., Palaiseau, 1986, Exp. No. XVI, 10.
  • [10] K. Diederich and J. E. Fornaess, Pseudoconvex domains with real-analytic boundary, Ann. Math. (2) 107 (1978), no. 2, 371–384.
  • [11] K. Diederich and J. E. Forness, Boundary regularity of proper holomorphic mappings, Invent. Math. 67 (1982), no. 3, 363–384.
  • [12] K. Diederich and J. E. Fornaess, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), no. 2, 129–141.
  • [13] J. E. Fornaess, Biholomorphic mappings between weakly pseudoconvex domains, Pacific J. Math. 74 (1978), no. 1, 63–65.
  • [14] H. Hironaka, Subanalytic sets, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 453–493.
  • [15] J. J. Kohn, Boundary behavior of $\delta$ on weakly pseudo-convex manifolds of dimension two, J. Differential Geometry 6 (1972), 523–542.
  • [16] H. Lewy, On the boundary behavior of holomorphic mappings, Acad. Naz. Lincei 35 (1977), 1–8.
  • [17] S. Maingot, Prolongement d'applications holomorphes propres, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 9, 399–402.
  • [18] S. I. Pinčuk, Proper holomorphic maps of strictly pseudoconvex domains, Sibirsk. Mat. Ž. 15 (1974), 909–917, 959.
  • [19] S. I. Pinčuk, The analytic continuation of holomorphic mappings, Mat. Sb. (N.S.) 98(140) (1975), no. 3(11), 416–435, 495–496.
  • [20] S. Sternberg, Lectures on differential geometry, Prentice-Hall Inc., Englewood Cliffs, N.J., 1964.