Duke Mathematical Journal

On the supercuspidal representations of GL4, I

Philip Kutzko and David Manderscheid

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 52, Number 4 (1985), 841-867.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077304725

Digital Object Identifier
doi:10.1215/S0012-7094-85-05244-5

Mathematical Reviews number (MathSciNet)
MR816388

Zentralblatt MATH identifier
0606.22011

Subjects
Primary: 22E50: Representations of Lie and linear algebraic groups over local fields [See also 20G05]

Citation

Kutzko, Philip; Manderscheid, David. On the supercuspidal representations of $\mathrm{GL}_4$ , I. Duke Math. J. 52 (1985), no. 4, 841--867. doi:10.1215/S0012-7094-85-05244-5. https://projecteuclid.org/euclid.dmj/1077304725


Export citation

References

  • [BF] C. J. Bushnell and A. Fröhlich, Nonabelian congruence Gauss sums and $p$-adic simple algebras, Proc. London Math. Soc. (3) 50 (1985), no. 2, 207–264.
  • [C] H. Carayol, Représentations cuspidales du groupe linéaire, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 2, 191–225.
  • [H1] R. Howe, Classification of irreducible representations of $\mathrmGL_2(F)$, IHES notes (1978).
  • [H2] R. Howe, Tamely ramified supercuspidal representations of $\rm Gl\sbn$, Pacific J. Math. 73 (1977), no. 2, 437–460.
  • [H3] R. Howe, Some qualitative results on the representation theory of $\rm Gl\sbn$ over a $p$-adic field, Pacific J. Math. 73 (1977), no. 2, 479–538.
  • [Hmo1] R. Howe and A. Moy, Lectures by R. Howe, NSF-CBMS Conference on representation theory and harmonic analysis for reductive groups over local fields, Amer. Math. Soc., to appear.
  • [Hmo2] R. Howe and A. Moy, Oral communication.
  • [I] N. Iwahori, Generalized Tits system (Bruhat decompostition) on $p$-adic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 71–83.
  • [J] H. Jacquet, Représentations des groupes linéaires $p$-adiques, Theory of group representations and Fourier analysis (Centro Internaz. Mat. Estivo (C.I.M.E.), II Ciclo, Montecatini Terme, 1970), Edizioni Cremonese, Rome, 1971, pp. 119–220.
  • [K1] P. C. Kutzko, On the supercuspidal representations of $\rm Gl\sb2$, Amer. J. Math. 100 (1978), no. 1, 43–60.
  • [K2] P. C. Kutzko, On the restriction of supercuspidal representations to compact, open subgroups, Duke Math. J. 52 (1985), no. 3, 753–764.
  • [KS] P. C. Kutzko and Sally, Jr., All supercuspidal representations of $\rm SL\sbl$ over a $p$-adic field are induced, Representation theory of reductive groups (Park City, Utah, 1982), Progr. Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983, pp. 185–196.
  • [M] F. Mautner, Spherical functions over $\germ b$-adic fields. II, Amer. J. Math. 86 (1964), 171–200.
  • [Mo] A. Moy, Local constants and the tame Langlands correspondence, These, University of Chicago, 1982.
  • [MoS] A. Moy and P. Sally, Jr., Supercuspidal representations of $\rm SL\sbn$ over a $p$-adic field: the tame case, Duke Math. J. 51 (1984), no. 1, 149–161.
  • [S] J. Shalika, Representations of the two by two unimodular group over local fields, IAS notes (1966).