Duke Mathematical Journal

Convexity of solutions of semilinear elliptic equations

Luis A. Caffarelli and Avner Friedman

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 52, Number 2 (1985), 431-456.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077304439

Digital Object Identifier
doi:10.1215/S0012-7094-85-05221-4

Mathematical Reviews number (MathSciNet)
MR792181

Zentralblatt MATH identifier
0599.35065

Subjects
Primary: 35B99: None of the above, but in this section
Secondary: 35J99: None of the above, but in this section

Citation

Caffarelli, Luis A.; Friedman, Avner. Convexity of solutions of semilinear elliptic equations. Duke Math. J. 52 (1985), no. 2, 431--456. doi:10.1215/S0012-7094-85-05221-4. https://projecteuclid.org/euclid.dmj/1077304439


Export citation

References

  • [1] A. Acker, L. E. Payne, and G. Philippin, On the convexity of level lines of the fundamental mode in the clamped membrane problem, and the existence of convex solutions in a related free boundary proble, Z. Angew. Math. Phys. 32 (1981), no. 6, 683–694.
  • [2] A. D. Alexandrov, Majorization of solutions of second order of linear equations, Verstrik Leningrad. Univ. 21 (1966), 5–25, English translation in Amer. Math. Soc. Transl. (2) 68 (1968), 120–143.
  • [3]1 R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts Vol. I: The Theory of the Steady State, Clarendon Press, Oxford, 1975.
  • [3]2 R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts Vol. II: Questions of Uniqueness, Stability, and Transient Behaviour, Clarendon Press, Oxford, 1975.
  • [4] I. Ja. Bakelman, On the theory of quasilinear elliptic equations, Sibirsk. Mat. Ž. 2 (1961), 179–186.
  • [5] H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis 22 (1976), no. 4, 366–389.
  • [6] L. A. Caffarelli and J. Spruck, Convexity properties of solutions to some classical variational problems, Comm. Partial Differential Equations 7 (1982), no. 11, 1337–1379.
  • [7] A. Friedman, Variational principles and free-boundary problems, Pure and Applied Mathematics, John Wiley & Sons Inc., New York, 1982.
  • [8] A. Friedman and D. Phillips, The free boundary of a semilinear elliptic equation, Trans. Amer. Math. Soc. 282 (1984), no. 1, 153–182.
  • [9] R. M. Gabriel, A result concerning convex level surfaces of $3$-dimensional harmonic functions, J. London Math. Soc. 32 (1957), 286–294.
  • [10]1 R. M. Gabriel, Further results concerning the level surfaces of the Green's function for a $3$-dimensional convex domain. I, J. London Math. Soc. 32 (1957), 295–302.
  • [10]2 R. M. Gabriel, Further results concerning the level surfaces of the Green's function for a $3$-dimensional convex domain. II, J. London Math. Soc. 32 (1957), 303–306.
  • [11] D. Gilbarg and H. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1977.
  • [12] B. Gustafsson, On the motion of a vortex in two-dimensional flow of an ideal fluid in simply and multiply connected domains, Technical Report, Royal Institute of Technology, Stockholm, Sweden, 1979.
  • [13] H. R. Haegi, Extremalprobleme und Ungleichungen konformer Gebietsgrössen, Compositio Math. 8 (1950), 81–111.
  • [14] N. Korevaar, Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 32 (1983), no. 4, 603–614.