Duke Mathematical Journal

Weil divisors on normal surfaces

Fumio Sakai

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 51, Number 4 (1984), 877-887.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077304098

Digital Object Identifier
doi:10.1215/S0012-7094-84-05138-X

Mathematical Reviews number (MathSciNet)
MR771385

Zentralblatt MATH identifier
0602.14006

Subjects
Primary: 14J25: Special surfaces {For Hilbert modular surfaces, see 14G35}
Secondary: 14C17: Intersection theory, characteristic classes, intersection multiplicities [See also 13H15] 14E30: Minimal model program (Mori theory, extremal rays)

Citation

Sakai, Fumio. Weil divisors on normal surfaces. Duke Math. J. 51 (1984), no. 4, 877--887. doi:10.1215/S0012-7094-84-05138-X. https://projecteuclid.org/euclid.dmj/1077304098


Export citation

References

  • [1] M. Artin, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485–496.
  • [2] L. Brenton, On the Riemann-Roch equation for singular complex surfaces, Pacific J. Math. 71 (1977), no. 2, 299–312.
  • [3] J. Giraud, Improvement of Grauert-Riemenschneider's theorem for a normal surface, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 4, 13–23 (1983).
  • [4] H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331–368.
  • [5] W. F. Hammond, Chern numbers of $2$-dimensional Satake compactifications, J. London Math. Soc. (2) 14 (1976), no. 1, 65–70.
  • [6] M. Kato, Riemann-Roch theorem for strongly pseudoconvex manifolds of dimension $2$, Math. Ann. 222 (1976), no. 3, 243–250.
  • [7] Y. Kawamata, A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann. 261 (1982), no. 1, 43–46.
  • [8] S. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. (2) 84 (1966), 293–344.
  • [9] H. Laufer, On rational singularities, Amer. J. Math. 94 (1972), 597–608.
  • [10] D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. (1961), no. 9, 5–22.
  • [11] F. Sakai, Enriques classification of normal Gorenstein surfaces, Amer. J. Math. 104 (1982), no. 6, 1233–1241.
  • [12] F. Sakai, Anticanonical models of rational surfaces, to appear in Math. Ann.
  • [13] J. P. Serre, Prolongement de faisceaux analytiques cohérents, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 363–374.
  • [14] M. Reid, Minimal models of canonical $3$-folds, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 131–180.
  • [15] E. Viehweg, Vanishing theorems, J. Reine Angew. Math. 335 (1982), 1–8.
  • [16] S. S. Yau, Sheaf cohomology in $1$-convex manifolds, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979), Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 429–452.