Duke Mathematical Journal

Variation of mixed Hodge structure arising from family of logarithmic deformations II: Classifying space

Sampei Usui

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 51, Number 4 (1984), 851-875.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077304097

Digital Object Identifier
doi:10.1215/S0012-7094-84-05137-8

Mathematical Reviews number (MathSciNet)
MR771384

Zentralblatt MATH identifier
0558.14005

Subjects
Primary: 14D05: Structure of families (Picard-Lefschetz, monodromy, etc.)
Secondary: 14C30: Transcendental methods, Hodge theory [See also 14D07, 32G20, 32J25, 32S35], Hodge conjecture 32G20: Period matrices, variation of Hodge structure; degenerations [See also 14D05, 14D07, 14K30] 32J25: Transcendental methods of algebraic geometry [See also 14C30]

Citation

Usui, Sampei. Variation of mixed Hodge structure arising from family of logarithmic deformations II: Classifying space. Duke Math. J. 51 (1984), no. 4, 851--875. doi:10.1215/S0012-7094-84-05137-8. https://projecteuclid.org/euclid.dmj/1077304097


Export citation

References

  • [C] F. Catanese, Surfaces with $K\sp{2}=p\sb{g}=1$ and their period mapping, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Math., vol. 732, Springer, Berlin, 1979, pp. 1–29.
  • [C.D] F. Catanese and O. Debarre, Surfaces with $K^{2}=2, p_{g}=1, q=0$, preprint.
  • [D.1] P. Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, vol. 163, Springer-Verlag, Berlin, 1970.
  • [D.2] P. Deligne, Travaux de Griffiths, Sém. Bourbaki Exp. 376 (1969/70), Lect. Notes Math., no. 180, Springer-Verlag.
  • [D.3] P. Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971), no. 40, 5–57.
  • [G.1]1 P. Griffiths, Periods of integrals on algebraic manifolds. I. Construction and properties of the modular varieties, Amer. J. Math. 90 (1968), 568–626.
  • [G.1]2 P. Griffiths, Periods of integrals on algebraic manifolds. II. Local study of the period mapping, Amer. J. Math. 90 (1968), 805–865.
  • [G.1]3 P. Griffiths, Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping, Inst. Hautes Études Sci. Publ. Math. (1970), no. 38, 125–180.
  • [G.2] P. Griffiths, Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems, Bull. Amer. Math. Soc. 76 (1970), 228–296.
  • [G.3] P. Griffiths, Infinitesimal Torelli theorem by means of mixed Hodge structure, manuscript.
  • [G.S.1] P. Griffiths and W. Schmid, Locally homogeneous complex manifolds, Acta Math. 123 (1969), 253–302.
  • [G.S.2] P. Griffiths and W. Schmid, Recent developments in Hodge theory: A discussion of techniques and results, Proc. Internat. Coll., Oxford Press, Bombay, 1971, pp. 31–127.
  • [Ka] Y. Kawamata, On deformations of compactifiable manifolds, Math. Ann. 235 (1978), no. 3, 247–265.
  • [Ko] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker Inc., New York, 1970.
  • [Sm] W. Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211–319.
  • [St] J. Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1975/76), no. 3, 229–257.
  • [T.1] A. N. Todorov, Surfaces of general type with $p\sb{g}=1$ and $(K,\,K)=1$. I, Ann. Scient. Ec. Norm. Sup. (4ê) Sér. 13 (1980), no. 1, 1–21.
  • [T.2] A. N. Todorov, A construction of surfaces with $p\sb{g}=1$, $q=0$ and $2\leq (K\sp{2})\leq 8$. Counterexamples of the global Torelli theorem, Inv. Math. 63 (1981), no. 2, 287–304.
  • [U.1] S. Usui, Period map of surfaces with $p\sb{g}=c\sp{2}\sb{1}=1$ and $K$ ample, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 2 (1981), 37–73.
  • [U.2] S. Usui, Effect of automorphisms on variation of Hodge structures, J. Math. Kyoto Univ. 21 (1981), no. 4, 645–672.
  • [U.3] S. Usui, Variation of mixed Hodge structures arising from family of logarithmic deformations, Ann. Scient. Ec. Norm. Sup. (4) 16 (1983), no. 1, 91–107.
  • [U.4]1 S. Usui, Period map of surfaces with $p\sb{g}=1,$ $c\sp{2}\sb{1}=2$ and $\pi \sb{1}={\bf Z}/2{\bf Z}$, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 5 (1984), 15–26.
  • [U.4]2 S. Usui, Addendum to: “Period map of surfaces with $p\sb{g}=1,$ $c\sp{2}\sb{1}=2$ and $\pi \sb{1}={\bf Z}/2{\bf Z}$”, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 5 (1984), 103–104.

See also

  • See also: Sampei Usui. Variation of mixed Hodge structure arising from family of logarithmic deformations. Ann. Sci. École Norm. Sup. Vol. 16 (1983), pp. 91–107.
  • See also: Masahiko Saito, Yuji Shimizu, Sampei Usui. Supplement to: “Variation of mixed Hodge structure arising from family of logarithmic deformations II: Classifying space”. Duke Math. J. Vol. 52, No. 2 (1985), pp. 529–534.