Duke Mathematical Journal

Cycles in a product of elliptic curves, and a group analogous to the class group

Stephen J. M. Mildenhall

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 67, Number 2 (1992), 387-406.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077294409

Digital Object Identifier
doi:10.1215/S0012-7094-92-06715-9

Mathematical Reviews number (MathSciNet)
MR1177312

Zentralblatt MATH identifier
0788.14004

Subjects
Primary: 14C25: Algebraic cycles
Secondary: 11G40: $L$-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture [See also 14G10] 11G45: Geometric class field theory [See also 11R37, 14C35, 19F05] 14C35: Applications of methods of algebraic $K$-theory [See also 19Exx] 14J20: Arithmetic ground fields [See also 11Dxx, 11G25, 11G35, 14Gxx]

Citation

Mildenhall, Stephen J. M. Cycles in a product of elliptic curves, and a group analogous to the class group. Duke Math. J. 67 (1992), no. 2, 387--406. doi:10.1215/S0012-7094-92-06715-9. https://projecteuclid.org/euclid.dmj/1077294409


Export citation

References

  • [Bl] S. Bloch, Algebraic $K$-theory, motives and algebraic cycles, to appear in Proceedings of 1990 ICM.
  • [BlKa] S. Bloch and K. Kato, $L$-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I ed. P. Cartier, et al., Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333–400.
  • [BLR] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990.
  • [Co] P. M. Cohn, Algebra. Vol. 2, John Wiley & Sons, London-New York-Sydney, 1977.
  • [CTR] J.-L. Colliot-Thélène and W. Raskind, Groupe de Chow de codimension deux des variétés définies sur un corps de nombres: un théorème de finitude pour la torsion, Invent. Math. 105 (1991), no. 2, 221–245.
  • [CTS] J.-L. Colliot-Thélène and J.-J. Sansuc, On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch, Duke Math. J. 48 (1981), no. 2, 421–447.
  • [DR] P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973, 143–316. Lecture Notes in Math., Vol. 349.
  • [D] D. R. Dorman, Global orders in definite quaternion algebras as endomorphism rings for reduced CM elliptic curves, Théorie des nombres (Quebec, PQ, 1987) eds. J.-M. de Koninck, C. Levesque, and W. de Gruyter, de Gruyter, Berlin, 1989, pp. 108–116.
  • [F] W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984.
  • [I] T. Ibukiyama, On maximal orders of division quaternion algebras over the rational number field with certain optimal embeddings, Nagoya Math. J. 88 (1982), 181–195.
  • [KS] Kazuya Kato and Shuji Saito, Global class field theory of arithmetic schemes, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 255–331.
  • [KM] N. M. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985.
  • [Lg1] S. Lang, Introduction to Arakelov theory, Springer-Verlag, New York, 1988.
  • [Lg2] S. Lang, Elliptic functions, 2nd edition ed., Graduate Texts in Mathematics, vol. 112, Springer-Verlag, New York, 1987.
  • [Mz1] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. (1977), no. 47, 33–186 (1978).
  • [M] S. J. M. Mildenhall, Cycles in a Product of Curves, thesis, Univ. of Chicago.
  • [Mi] J. S. Milne, Jacobian varieties, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, pp. 167–212.
  • [Ogg1] A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449–462.
  • [Ogg2] A. P. Ogg, Rational points on certain elliptic modular curves, Analytic number theory (Proc. Sympos. Pure Math., Vol XXIV, St. Louis Univ., St. Louis, Mo., 1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 221–231.
  • [Ogg3] A. P. Ogg, Modular functions, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 521–532.
  • [Ram] D. Ramakrishnan, Regulators, algebraic cycles, and values of $L$-functions, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987), Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 183–310.
  • [Ra1] W. Raskind, Algebraic $K$-theory, étale cohomology and torsion algebraic cycles, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987), Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 311–341.
  • [Ra2] W. Raskind, Torsion algebraic cycles on varieties over local fields, Algebraic $K$-theory: connections with geometry and topology (Lake Louise, AB, 1987) eds. J. F. Jardine and V. P. Snaith, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 279, Kluwer Acad. Publ., Dordrecht, 1989, pp. 343–388.
  • [Sal] P. Salberger, Zero-cycles on rational surfaces over number fields, Invent. Math. 91 (1988), no. 3, 505–524.
  • [Sil] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986.
  • [Wat] W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4) 2 (1969), 521–560.