Duke Mathematical Journal

Comparaison des métriques d’Arakelov et de Poincaré sur X0(N)

Ahmed Abbes and Emmanuel Ullmo

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 80, Number 2 (1995), 295-307.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077246084

Digital Object Identifier
doi:10.1215/S0012-7094-95-08012-0

Mathematical Reviews number (MathSciNet)
MR1369394

Zentralblatt MATH identifier
0895.14007

Subjects
Primary: 11G18: Arithmetic aspects of modular and Shimura varieties [See also 14G35]
Secondary: 11F11: Holomorphic modular forms of integral weight 11F25: Hecke-Petersson operators, differential operators (one variable) 14G40: Arithmetic varieties and schemes; Arakelov theory; heights [See also 11G50, 37P30]

Citation

Abbes, Ahmed; Ullmo, Emmanuel. Comparaison des métriques d’Arakelov et de Poincaré sur $X_0(N)$. Duke Math. J. 80 (1995), no. 2, 295--307. doi:10.1215/S0012-7094-95-08012-0. https://projecteuclid.org/euclid.dmj/1077246084


Export citation

References

  • [1] A. Abbes and E. Ullmo, Self-intersection du dualisant relatif des courbes modulaires $X_0(N)$, preprint.
  • [2] S. Ju. Arakelov, Intersection theory of divisors on an arithmetic surface, Math. USSR-Izv. 8 (1974), 1167–1180.
  • [3] A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma \sb0(m)$, Math. Ann. 185 (1970), 134–160.
  • [4] H. Carayol, Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409–468.
  • [5] C. Gasbarri, Accouplement de Deligne et hauteurs de Néron-Tate, preprint, 1994.
  • [6] T. Kubota, Elementary theory of Eisenstein series, Kodansha Ltd., Tokyo, 1973.
  • [7] B. Mazur, Courbes elliptiques et symboles modulaires, Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 414, Springer, Berlin, 1973, 277–294. Lecture Notes in Math., Vol. 317.
  • [8] L. Moret-Bailly, Métriques permises, Astérisque (1985), no. 127, 29–87, dans Séminaire Sur Les Pinceaux Arithmétiques.
  • [9] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. (3) 31 (1975), no. 1, 79–98.
  • [10] J. H. Silverman, Heights and elliptic curves, Arithmetic geometry (Storrs, Conn., 1984) eds. G. Cornell and J. Silverman, Springer, New York, 1986, pp. 253–265.
  • [11] L. Szpiro, Discriminant et conducteur des courbes elliptiques, Astérisque (1990), no. 183, 7–18, dans Séminaire Sur Les Pinceaux De Courbes Elliptiques.
  • [12] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, vol. 13, Institut Elie Cartan, Université de Nancy I, Vandoeuvre-lès-Nancy, 1990.
  • [13] D. Zagier, Modular parametrizations of elliptic curves, Canad. Math. Bull. 28 (1985), no. 3, 372–384.
  • [14] D. Zagier, Eisenstein series and the Selberg trace formula. I, Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math., vol. 10, Tata Inst. Fundamental Res., Bombay, 1981, pp. 303–355.