Duke Mathematical Journal

Intrinsic heights of stable varieties and abelian varieties

J.-B. Bost

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 82, Number 1 (1996), 21-70.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077244838

Digital Object Identifier
doi:10.1215/S0012-7094-96-08202-2

Mathematical Reviews number (MathSciNet)
MR1387221

Zentralblatt MATH identifier
0867.14010

Subjects
Primary: 14G40: Arithmetic varieties and schemes; Arakelov theory; heights [See also 11G50, 37P30]
Secondary: 11G35: Varieties over global fields [See also 14G25] 14G25: Global ground fields 14K15: Arithmetic ground fields [See also 11Dxx, 11Fxx, 11G10, 14Gxx]

Citation

Bost, J.-B. Intrinsic heights of stable varieties and abelian varieties. Duke Math. J. 82 (1996), no. 1, 21--70. doi:10.1215/S0012-7094-96-08202-2. https://projecteuclid.org/euclid.dmj/1077244838


Export citation

References

  • [A] T. Aubin, Équations du type Monge-Ampère sur les variétés kähleriennes compactes, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 3, Aiii, A119–A121.
  • [Be] A. Berthomieu, Comparaison de métriques de Quillen sur l'inverse du déterminant de la cohomologie du fibré de Poincaré, preprint.
  • [BiBo] J.-M. Bismut and J.-B. Bost, Fibrés déterminants, métriques de Quillen et dégénérescence des courbes, Acta Math. 165 (1990), no. 1-2, 1–103.
  • [BiGiS]1 J.-M. Bismut, H. Gillet, and C. Soulé, Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys. 115 (1988), no. 1, 49–78.
  • [BiGiS]2 J.-M. Bismut, H. Gillet, and C. Soulé, Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott-Chern forms, Comm. Math. Phys. 115 (1988), no. 1, 79–126.
  • [BiGiS]3 J.-M. Bismut, H. Gillet, and C. Soulé, Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants, Comm. Math. Phys. 115 (1988), no. 2, 301–351.
  • [BiV] J.-M. Bismut and E. Vasserot, The asymptotics of the Ray-Singer analytic torsion associated with high powers of a positive line bundle, Comm. Math. Phys. 125 (1989), no. 2, 355–367.
  • [Bo1] J.-B. Bost, Théorie de l'intersection et théorème de Riemann-Roch arithmétiques, Astérisque (1991), no. 201-203, Exp. No. 731, 43–88 (1992).
  • [Bo2] J.-B. Bost, Semi-stability and heights of cycles, Invent. Math. 118 (1994), no. 2, 223–253.
  • [BoGiS] J.-B. Bost, H. Gillet, and C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994), no. 4, 903–1027.
  • [Bu] J.-F. Burnol, Remarques sur la stabilité en arithmétique, Internat. Math. Res. Notices (1992), no. 6, 117–127.
  • [C] C.-L. Chai, Compactification of Siegel moduli schemes, London Mathematical Society Lecture Note Series, vol. 107, Cambridge University Press, Cambridge, 1985.
  • [CH] M. Cornalba and J. Harris, Divisor classes associated to families of stable varieties, with applications to the moduli space of curves, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 3, 455–475.
  • [CW] W.-L. Chow and B. L. van der Waerden, Zur algebraischen Geometrie IX: Über zugeordnete Formen und algebraische Systeme von algebraischen Mannigfaltigkeiten, Math. Ann. 113 (1937), 692–704.
  • [D1] P. Deligne, Preuve des conjectures de Tate et de Shafarevitch (d'après G. Faltings), Astérisque (1985), no. 121-122, 25–41.
  • [D2] P. Deligne, Le lemme de Gabber, Astérisque (1985), no. 127, 131–150.
  • [Fa1] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366.
  • [Fa2] G. Faltings, Calculus on arithmetic surfaces, Ann. of Math. (2) 119 (1984), no. 2, 387–424.
  • [Fa3] G. Faltings, Diophantine approximation on abelian varieties, Ann. of Math. (2) 133 (1991), no. 3, 549–576.
  • [Fa4] G. Faltings, Lectures on the arithmetic Riemann-Roch theorem, Annals of Mathematics Studies, vol. 127, Princeton University Press, Princeton, NJ, 1992.
  • [FaC] G. Faltings and C.-L. Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, Springer-Verlag, Berlin, 1990.
  • [Fu] W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984.
  • [G] D. Gieseker, Global moduli for surfaces of general type, Invent. Math. 43 (1977), no. 3, 233–282.
  • [Gi] H. Gillet, An introduction to higher-dimensional Arakelov theory, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 209–228.
  • [GiS1] H. Gillet and C. Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. (1990), no. 72, 93–174 (1991).
  • [GiS2]1 H. Gillet and C. Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. I, Ann. of Math. (2) 131 (1990), no. 1, 163–203.
  • [GiS2]2 H. Gillet and C. Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. II, Ann. of Math. (2) 131 (1990), no. 2, 205–238.
  • [GiS3] H. Gillet and C. Soulé, An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), no. 3, 473–543.
  • [GiS4] H. Gillet and C. Soulé, Amplitude arithmétique, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 17, 887–890.
  • [GrH] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978.
  • [Ha] J.-I. Hano, The complex Laplace-Beltrami operator canonically associated to a polarized abelian variety, Manifolds and Lie groups (Notre Dame, Ind., 1980), Progr. Math., vol. 14, Birkhäuser Boston, Mass., 1981, pp. 109–144.
  • [Hi] D. Hilbert, Über die Theorie der algebraischen Formen, Math. Ann. 36 (1890), 473–574.
  • [K] G. R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299–316.
  • [MuMa] T. Matsusaka and D. Mumford, Two fundamental theorems on deformations of polarized varieties, Amer. J. Math. 86 (1964), 668–684.
  • [MB1] L. Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque (1985), no. 129, 266.
  • [MB2] L. Moret-Bailly, Compactifications, hauteurs et finitude, Astérisque (1985), no. 127, 113–129.
  • [MB3] L. Moret-Bailly, Sur l'équation fonctionnelle de la fonction thêta de Riemann, Compositio Math. 75 (1990), no. 2, 203–217.
  • [Mu1] D. Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay, 1970.
  • [Mu2] D. Mumford, Stability of projective varieties, Enseignement Math. (2) 23 (1977), no. 1-2, 39–110.
  • [MuF] D. Mumford and J. Fogarty, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 34, Springer-Verlag, Berlin, 1982.
  • [P] P. Philippon, Sur des hauteurs alternatives. I, Math. Ann. 289 (1991), no. 2, 255–283.
  • [R] M. Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Mathematics, Vol. 119, Springer-Verlag, Berlin, 1970.
  • [Sa] P. Samuel, Méthodes d'algèbre abstraite en géométrie algébrique, Seconde édition, corrigée. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 4, Springer-Verlag, Berlin, 1967.
  • [S1] C. Soulé, Géométrie d'Arakelov et théorie des nombres transcendants, Astérisque (1991), no. 198-200, 355–371 (1992).
  • [S2] C. Soulé, Successive minima on arithmetic varieties, Inst. Hautes Études Sci. preprint, 1993.
  • [SABK] C. Soulé, D. Abramovich, and Burnol J.-F., Lectures on Arakelov geometry, Cambridge Studies in Advanced Mathematics, vol. 33, Cambridge University Press, Cambridge, 1992.
  • [Y] S. T. Yau, Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 5, 1798–1799.
  • [Z1] S. Zhang, Positive line bundles on arithmetic varieties, J. Amer. Math. Soc. 8 (1995), no. 1, 187–221.
  • [Z2] S. Zhang, Geometric reductivity at Archimedean places, Internat. Math. Res. Notices (1994), no. 10, 425 ff., approx. 9 pp. (electronic).
  • [Z3] S. Zhang, Heights and reductions of semistable varieties, preprint.