Duke Mathematical Journal

Cycles of quadratic polynomials and rational points on a genus-2 curve

E. V. Flynn, Bjorn Poonen, and Edward F. Schaefer

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 90, Number 3 (1997), 435-463.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077232810

Digital Object Identifier
doi:10.1215/S0012-7094-97-09011-6

Mathematical Reviews number (MathSciNet)
MR1480542

Zentralblatt MATH identifier
0958.11024

Subjects
Primary: 11G30: Curves of arbitrary genus or genus = 1 over global fields [See also 14H25]
Secondary: 11G10: Abelian varieties of dimension > 1 [See also 14Kxx] 14G05: Rational points

Citation

Flynn, E. V.; Poonen, Bjorn; Schaefer, Edward F. Cycles of quadratic polynomials and rational points on a genus- $2$ curve. Duke Math. J. 90 (1997), no. 3, 435--463. doi:10.1215/S0012-7094-97-09011-6. https://projecteuclid.org/euclid.dmj/1077232810


Export citation

References

  • [1] T. Bousch, Sur quelques problèmes de dynamique holomorphe, thèse, Universitè de Paris-Sud, Centre d'Orsay, 1992.
  • [2] G. Call and J. Silverman, Canonical heights on varieties with morphisms, Compositio Math. 89 (1993), no. 2, 163–205.
  • [3] J. W. S. Cassels, Local fields, London Mathematical Society Student Texts, vol. 3, Cambridge University Press, Cambridge, 1986.
  • [4] J. W. S. Cassels, The Mordell-Weil group of curves of genus $2$, Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Mass., 1983, pp. 27–60.
  • [5] C. Chabauty, Sur les points rationnels des courbes algébriques de genre supérieur à l'unité, C. R. Acad. Sci. Paris 212 (1941), 882–885.
  • [6] R. F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765–770.
  • [7] E. V. Flynn, The Jacobian and formal group of a curve of genus $2$ over an arbitrary ground field, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 3, 425–441.
  • [8] E. V. Flynn, The group law on the Jacobian of a curve of genus $2$, J. Reine Angew. Math. 439 (1993), 45–69.
  • [9] E. V. Flynn, Descent via isogeny in dimension $2$, Acta Arith. 66 (1994), no. 1, 23–43.
  • [10] E. V. Flynn, An explicit theory of heights, Trans. Amer. Math. Soc. 347 (1995), no. 8, 3003–3015.
  • [11] E. V. Flynn, A flexible method for applying Chabauty's theorem, Compositio Math. 105 (1997), no. 1, 79–94.
  • [12] D. Gordon and D. Grant, Computing the Mordell-Weil rank of Jacobians of curves of genus two, Trans. Amer. Math. Soc. 337 (1993), no. 2, 807–824.
  • [13] D. Grant, Formal groups in genus two, J. Reine Angew. Math. 411 (1990), 96–121.
  • [14] N. Katz, Galois properties of torsion points on abelian varieties, Invent. Math. 62 (1981), no. 3, 481–502.
  • [15] M. Kenku, On the number of ${\bf Q}$-isomorphism classes of elliptic curves in each ${\bf Q}$-isogeny class, J. Number Theory 15 (1982), no. 2, 199–202.
  • [16] A. Knapp, Elliptic curves, Mathematical Notes, vol. 40, Princeton University Press, Princeton, NJ, 1992.
  • [17] S. Lang, Abelian varieties, Interscience Tracts in Pure and Applied Mathematics. No. 7, Interscience Publishers, Inc., New York, 1959.
  • [18] H. Lange, Kurven mit rationaler Abbildung, J. Reine Angew. Math. 295 (1977), 80–115.
  • [19] B. Levi, Saggio per una teoria aritmetica della forme cubiche ternarie, Atti Accad. Reale Sci. Torino 43 (1908), 99–120.
  • [20] D. Lewis, Invariant sets of morphisms on projective and affine number spaces, J. Algebra 20 (1972), 419–434.
  • [21] W. G. McCallum, On the Shafarevich-Tate group of the Jacobian of a quotient of the Fermat curve, Invent. Math. 93 (1988), no. 3, 637–666.
  • [22] W. G. McCallum, The arithmetic of Fermat curves, Math. Ann. 294 (1992), no. 3, 503–511.
  • [23] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437–449.
  • [24] J. Merriman and N. Smart, Curves of genus $2$ with good reduction away from $2$ with a rational Weierstrass point, Math. Proc. Cambridge Philos. Soc. 114 (1993), no. 2, 203–214.
  • [25] J. S. Milne, Jacobian varieties, Arithmetic geometry (Storrs, Conn., 1984) eds. G. Cornell and J. H. Silverman, Springer, New York, 1986, pp. 167–212.
  • [26] P. Morton, Arithmetic properties of periodic points of quadratic maps, II, preprint, 1995.
  • [27] P. Morton, On certain algebraic curves related to polynomial maps, Compositio Math. 103 (1996), no. 3, 319–350.
  • [28] P. Morton and J. Silverman, Rational periodic points of rational functions, Internat. Math. Res. Notices (1994), no. 2, 97–110.
  • [29] P. Morton and J. Silverman, Periodic points, multiplicities, and dynamical units, J. Reine Angew. Math. 461 (1995), 81–122.
  • [30] W. Narkiewicz, On polynomial transformations in several variables, Acta Arith. 11 (1965), 163–168.
  • [31] D. Northcott, Periodic points on an algebraic variety, Ann. of Math. (2) 51 (1950), 167–177.
  • [32] B. Poonen, Torsion in rank-$1$ Drinfel'd modules and the uniform boundedness conjecture, to appear in Math. Ann.
  • [33] E. Pyle, Abelian varieties over $\mathbb{Q}$ with large endomorphism algebras and their simple components over $\bar{\mathbb{Q}}$, Ph.D. thesis, Univ. of Calif., Berkeley, 1995.
  • [34] K. Ribet, Endomorphism algebras of abelian varieties attached to newforms of weight $2$, Seminar on Number Theory, Paris 1979–80, Progr. Math., vol. 12, Birkhäuser Boston, Mass., 1981, pp. 263–276.
  • [35] K. Ribet, Abelian varieties over ${\bf Q}$ and modular forms, Algebra and topology 1992 (Taejŏn), Korea Adv. Inst. Sci. Tech., Taejŏn, 1992, pp. 53–79.
  • [36] E. F. Schaefer, $2$-descent on the Jacobians of hyperelliptic curves, J. Number Theory 51 (1995), no. 2, 219–232.
  • [37] R. Walde and P. Russo, Rational periodic points of the quadratic function $Q\sb c(x)=x\sp 2+c$, Amer. Math. Monthly 101 (1994), no. 4, 318–331.
  • [38] W. C. Waterhouse and J. S. Milne, Abelian varieties over finite fields, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), Amer. Math. Soc., Providence, R.I., 1971, pp. 53–64.
  • [39] T. Youssefi, Inégalité relative des genres, Manuscripta Math. 78 (1993), no. 2, 111–128.