Duke Mathematical Journal

Quantum supergroups of GL(n|m) type: Differential forms, Koszul complexes, and Berezinians

Volodymyr Lyubashenko and Anthony Sudbery

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 90, Number 1 (1997), 1-62.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077232446

Digital Object Identifier
doi:10.1215/S0012-7094-97-09001-3

Mathematical Reviews number (MathSciNet)
MR1478542

Zentralblatt MATH identifier
0905.16018

Subjects
Primary: 16W30
Secondary: 17B37: Quantum groups (quantized enveloping algebras) and related deformations [See also 16T20, 20G42, 81R50, 82B23] 58B30

Citation

Lyubashenko, Volodymyr; Sudbery, Anthony. Quantum supergroups of $GL(n | m)$ type: Differential forms, Koszul complexes, and Berezinians. Duke Math. J. 90 (1997), no. 1, 1--62. doi:10.1215/S0012-7094-97-09001-3. https://projecteuclid.org/euclid.dmj/1077232446


Export citation

References

  • [1] G. M. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 (1978), no. 2, 178–218.
  • [2] T. Brzeziński, Remarks on bicovariant differential calculi and exterior Hopf algebras, Lett. Math. Phys. 27 (1993), no. 4, 287–300.
  • [3] V. G. Drinfel'd, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) ed. A. Gleason, Amer. Math. Soc., Providence, RI, 1987, pp. 798–820.
  • [4] D. Gurevich, Hecke symmetries and quantum determinants, Soviet Math. Dokl. 38 (1989), 555–559.
  • [5] D. Gurevich, Algebraic aspects of the quantum Yang–Baxter equation, Leningrad Math. J. 2 (1991), 801–828.
  • [6] M. Jimbo, A $q$-analogue of $U(\germ g\germ l(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247–252.
  • [7] A. Joyal and R. Street, Tortile Yang-Baxter operators in tensor categories, J. Pure Appl. Algebra 71 (1991), no. 1, 43–51.
  • [8] H. Künneth, Über die Bettischen Zahlen einer Produktmannigfaltigkeit, Math. Ann. 90 (1923), 65–85.
  • [9] R. G. Larson, The order of the antipode of a Hopf algebra, Proc. Amer. Math. Soc. 21 (1969), 167–170.
  • [10] V. V. Lyubashenko, Hopf algebras and vector symmetries, Russian Math. Surveys 41 (1986), 153–154.
  • [11] V. V. Lyubashenko, The Berezinian in some monoidal categories, Ukrain. Mat. Zh. 38 (1986), no. 5, 588–592, 678.
  • [12] V. V. Lyubashenko, Superanalysis and solutions to the triangles equation, dissertation, Kiev, 1987.
  • [13] V.V. Lyubashenko, Tangles and Hopf algebras in braided categories, J. Pure Appl. Algebra 98 (1995), no. 3, 245–278.
  • [14] V. V. Lyubashenko, Modular transformations for tensor categories, J. Pure Appl. Algebra 98 (1995), no. 3, 279–327.
  • [15] S. Majid, Reconstruction theorems and rational conformal field theories, Internat. J. Modern Phys. A 6 (1991), no. 24, 4359–4374.
  • [16] S. Majid and M. Markl, Glueing operation for $R$-matrices, quantum groups and link-invariants of Hecke type, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 1, 139–166.
  • [17] S. Majid and Y. S. Soibelman, Rank of quantized universal enveloping algebras and modular functions, Comm. Math. Phys. 137 (1991), no. 2, 249–262.
  • [18] G. Maltsiniotis, Groupes quantiques et structures différentielles, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 12, 831–834.
  • [19] G. Maltsiniotis, Le langage des espaces et des groupes quantiques, Comm. Math. Phys. 151 (1993), no. 2, 275–302.
  • [20] Yu. I. Manin, Quantum groups and noncommutative geometry, Université de Montréal Centre de Recherches Mathématiques, Montreal, QC, 1988.
  • [21] Yu. I. Manin, Notes on quantum groups and quantum de Rham complexes, Theoret. and Math. Phys. 92 (1992), no. 3, 997–1023.
  • [22] P. Schauenburg, Tannaka duality for arbitrary Hopf algebras, Algebra Berichte [Algebra Reports], vol. 66, Verlag Reinhard Fischer, Munich, 1992.
  • [23] P. Schauenburg, Hopf modules and Yetter-Drinfel'd modules, J. Algebra 169 (1994), no. 3, 874–890.
  • [24] A. Schirrmacher, The multiparametric deformation of $\rm GL(n)$ and the covariant differential calculus on the quantum vector space, Z. Phys. C 50 (1991), no. 2, 321–327.
  • [25] P. Schupp, P. Watts, and B. Zumino, Differential geometry on linear quantum groups, Lett. Math. Phys. 25 (1992), no. 2, 139–147.
  • [26]1 A. Sudbery, Canonical differential calculus on quantum general linear groups and supergroups, Phys. Lett. B 284 (1992), no. 1-2, 61–65.
  • [26]2 A. Sudbery, Errata: “Canonical differential calculus on quantum general linear groups and supergroups”, Phys. Lett. B 291 (1992), no. 4, 519.
  • [27] A. Sudbery, Matrix-element bialgebras determined by quadratic coordinate algebras, J. Algebra 158 (1993), no. 2, 375–399.
  • [28] A. Sudbery, The algebra of differential forms on a full matric bialgebra, Math. Proc. Cambridge Philos. Soc. 114 (1993), no. 1, 111–130.
  • [29] M. E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969.
  • [30] B. Tsygan, Notes on differential forms on quantum groups, Selecta Math. Soviet. 12 (1993), no. 1, 75–103.
  • [31] M. Takeuchi, Matric bialgebras and quantum groups: Hopf algebras, Israel J. Math. 72 (1990), no. 1-2, 232–251.
  • [32] S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys. 122 (1989), no. 1, 125–170.
  • [33] D. N. Yetter, Quantum groups and representations of monoidal categories, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 2, 261–290.
  • [34] D. N. Yetter, Coalgebras, comodules, coends, and reconstruction, preprint.
  • [35] B. Zumino, Differential calculus on quantum spaces and quantum groups, preprint UCB-PTH-92/41, 1992.