## Differential and Integral Equations

- Differential Integral Equations
- Volume 26, Number 11/12 (2013), 1275-1285.

### Small data blow-up of $L^2$-solution for the nonlinear Schrödinger equation without gauge invariance

Masahiro Ikeda and Yuta Wakasugi

#### Abstract

We study the initial-value problem for the nonlinear Schrödinger equation $$ i\partial _{t}u+\Delta u=\lambda\vert u\vert ^{p}, \quad\left( t,x\right) \in \left[ 0,T\right) \times \mathbf{R}^{n}, $$ where $1 < p$ and $\lambda\in\mathbf{C}\setminus\{0\}$. The local well-posedness is well known in $L^2$ if $1 < p < 1+4/n$. In this paper, we study the global behavior of the solutions, and we will prove a small-data blow-up result of an $L^2$-solution when $1 < p\le 1+2/n$.

#### Article information

**Source**

Differential Integral Equations, Volume 26, Number 11/12 (2013), 1275-1285.

**Dates**

First available in Project Euclid: 4 September 2013

**Permanent link to this document**

https://projecteuclid.org/euclid.die/1378327426

**Mathematical Reviews number (MathSciNet)**

MR3129009

**Zentralblatt MATH identifier**

1313.35324

**Subjects**

Primary: 35Q55: NLS-like equations (nonlinear Schrödinger) [See also 37K10]

#### Citation

Ikeda, Masahiro; Wakasugi, Yuta. Small data blow-up of $L^2$-solution for the nonlinear Schrödinger equation without gauge invariance. Differential Integral Equations 26 (2013), no. 11/12, 1275--1285. https://projecteuclid.org/euclid.die/1378327426