Communications in Mathematical Physics

Asymptotic analysis of Gaussian integrals. II. Manifold of minimum points

Richard S. Ellis and Jay S. Rosen

Full-text: Open access

Article information

Source
Comm. Math. Phys., Volume 82, Number 2 (1981), 153-181.

Dates
First available in Project Euclid: 24 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.cmp/1103920517

Mathematical Reviews number (MathSciNet)
MR0639055

Zentralblatt MATH identifier
0532.28013

Subjects
Primary: 60G15: Gaussian processes
Secondary: 28C20: Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.) [See also 46G12, 58C35, 58D20, 60B11] 58D20: Measures (Gaussian, cylindrical, etc.) on manifolds of maps [See also 28Cxx, 46T12] 81C35

Citation

Ellis, Richard S.; Rosen, Jay S. Asymptotic analysis of Gaussian integrals. II. Manifold of minimum points. Comm. Math. Phys. 82 (1981), no. 2, 153--181. https://projecteuclid.org/euclid.cmp/1103920517


Export citation