Communications in Mathematical Analysis

An implication of Gödel's incompleteness theorem II: Not referring to the validity of oneself's assertion

Hitoshi Kitada

Full-text: Open access

Abstract

In [10] we reviewed Gödel's incompleteness theorem and gave a new proof along with an application which leads to a contradiction when applying the Gödel's discussion to the set theory ZFC itself. We stated a possible solution to avoid contradiction by removing the self-reference by appealing to the axiomatic formulation of a theory with referring to its validity in no explicit ways. We will in this paper give a more specific possible solution that one can avoid the Gödel type self-contradiction by preventing oneself from telling anything definite about the validity of oneself's assertion.

Article information

Source
Commun. Math. Anal., Volume 10, Number 2 (2011), 24-52.

Dates
First available in Project Euclid: 28 November 2011

Permanent link to this document
https://projecteuclid.org/euclid.cma/1322489163

Mathematical Reviews number (MathSciNet)
MR2859850

Zentralblatt MATH identifier
1235.03085

Subjects
Primary: 03F40: Gödel numberings and issues of incompleteness
Secondary: 03F15: Recursive ordinals and ordinal notations 03B25: Decidability of theories and sets of sentences [See also 11U05, 12L05, 20F10] 03E99: None of the above, but in this section

Keywords
Incompleteness Inconsistency Gödel Self-reference Validity

Citation

Kitada , Hitoshi. An implication of Gödel's incompleteness theorem II: Not referring to the validity of oneself's assertion. Commun. Math. Anal. 10 (2011), no. 2, 24--52. https://projecteuclid.org/euclid.cma/1322489163


Export citation

References

  • L. E. J. Brouwer, De onbetrouwbaarheid der logische principes, Tijdschrift voor wijsbegeerte, 2 (1908), 152-158.
  • S. B. Cooper, Computability Theory, Chapman & Hall/CRC (2004).
  • S. Feferman, Transfinite recursive progressions of axiomatic theories, Journal Symbolic Logic, 27 (1962), 259-316.
  • K. Gödel, On formally undecidable propositions of Principia mathematica and related systems I, in Kurt Gödel Collected Works, Volume I, Publications 1929-1936, pp.144-195, Oxford University Press, New York, Clarendon Press, Oxford (1986), translated from Über formal unentsceidebare Sätze der Principia mathematica und verwandter Systeme I, Monatshefte für Mathematik und Physik, 38 (1931), 173-198.
  • A. Heyting, Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3, no. 4, Springer, Berlin (1934).
  • D. Hilbert and P. Bernays, Grundlagen der Mathematik, Springer, vol. 1 1934, vol. 2 1939.
  • H.Kitada, Is mathematics consistent?, http://arXiv.org/abs/math.GM/ 0306007 (2003).
  • H.Kitada, Does Church-Kleene ordinal $\omega_1^{CK}$ exist?, http://arXiv.org /abs/math.GM/0307090 (2003).
  • H.Kitada, Quantum Mechanics, Lectures in Mathematical Sciences, vol. 23, The University of Tokyo (2005), ISSN 0919-8180, ISBN 1-000-01896-2. http://arxiv.org/abs/quant-ph/0410061
  • H.Kitada, An implication of Gödel's incompleteness theorem, Int. J. Pure Appl. Math., 52 (2009), No. 4, 511-567.
  • H.Kitada, Rebuttal to the review of my paper “An implication of Gödel's incompleteness theorem" appeared in Zentralblatt für Mathematik, Int. J. Pure Appl. Math., 70 (2011), No. 1, 11-14.
  • H.Kitada, Gödel's Incompleteness Theorem 1 - 12, Mathematics for Scientists vol. 41, No. 4 - vol. 42, No. 3, Gendai-Suugaku-Sha, April, 2008 - March, 2009, ISSN 1344-1345.
  • S. C. Kleene, Introduction to Metamathematics, North-Holland Publishing Co. Amsterdam, P. Noordhoff N. V., Groningen (1964).
  • K. Kunen, Set Theory, An introduction to Independence Proofs, Elsevier Science B. V. (1980).
  • L.Löwenheim, Über Möglichkeiten im Relativkallül, Math. Ann. 76 (1915), 447-470.
  • A. Robinson, Introduction to Model Theory and to the Metamathematics of Algebra, North-Holland Publishing Company, Amsterdam (1965).
  • H. Rogers Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill (1967).
  • J. B. Rosser, Extensions of some theorems of Gödel and Church, Journal Symbolic Logic, 1 (1936), 87-91.
  • B. Russell, The Principles of Mathematics, W. W. Norton & Company, Inc., (1903 (reissued 1996)).
  • Saeed Salehi, Zbl 1186.03072 Kitada, Hitoshi An implication of Gödel's incompleteness theorem. (English) Int. J. Pure Appl. Math. 52, No. 4, 511-567 (2009). ISSN 1311-8080 Zentralblatt MATH Database 1931-2011 http://www.zentralblatt-math.org/zmath/?q=an:05575645&type=pdf&format=complete
  • U. R. Schmerl, Iterated reflection principles and the $\omega$-rule, Journal Symbolic Logic, 47 (1982), 721-733.
  • A.Tarski, Der Wahrheitsbegriff in den Sprachen der deduktiven Dissiplinen, Akademia der Wissenschaften in Wien, Mathematische-naturwissenschaftliche Klasse Anzeiger, 69 (1932), 23-25.
  • A.Tarski, Der Wahrheitsbegriff in den formalisierten Sprachen, Studia philosophica, 1 (1933), 261-405. Tr. by L. Blaustein from the Polish original 1933.
  • A.M.Turing, Systems of logic based on ordinals, Proc. London Math. Soc., ser. 2, 45 (1939), 161-228.
  • H.Weyl, Mathematics and logic. A brief survey serving as a preface to a review of “The Philosophy of Bertrand Russell", Amer. math. monthly, 53 (1946), 2-13.
  • A. N. Whitehead and B. Russell, Principia Mathematica, Vol. 1-3, Cambridge Univ. Press, 1925-1927.