Communications in Mathematical Analysis

Unique solvability of vorticity equation of incompressible viscous fluid on a rotating sphere

Yuri N. Skiba

Full-text: Open access

Abstract

Ortogonal projectors, fractional derivatives and Hilbert and Banach spaces on a two-dimensional unit sphere are introduced. Unique solvability of nonstationary problem for barotropic vorticity equation on the sphere in classes of generalized functions is proved.

Article information

Source
Commun. Math. Anal., Conference 3 (2011), 209-224.

Dates
First available in Project Euclid: 25 February 2011

Permanent link to this document
https://projecteuclid.org/euclid.cma/1298670014

Mathematical Reviews number (MathSciNet)
MR2772063

Zentralblatt MATH identifier
1208.35116

Citation

Skiba, Yuri N. Unique solvability of vorticity equation of incompressible viscous fluid on a rotating sphere. Commun. Math. Anal. (2011), no. 3, 209--224. https://projecteuclid.org/euclid.cma/1298670014


Export citation

References

  • V. I. Arnold, Ordinary Differential Equations. Nauka, Moscow 1965 (Russian) (Translated from the Russian by Roger Cooke. 2nd edition. Universitext. Springer-Verlag, Berlin 2006).
  • R. Askey and St. Wainger, On the Behaviour of Special Classes of Ultraspherical Expansions. Part 1,2. J. Analyse Math. (1965) 15, pp 193-220, pp 221-244.
  • L. F. F. Bers John and M. Schecter, Partial Differential Equations. Wiley, New York 1964.
  • V. P. Dymnikov and Yu. N. Skiba, Barotropic instability of zonally asymmetric atmospheric flows over topography. Sov. J. Numer. Anal. Math. Modelling 2 (1987), No. 2, pp 83-98.
  • A. D. Gadzhiev, Differential properties of the symbol of a multidimensional singular integral operator. (Russian) Mat. Sbornik 114, (156), (1981), No. 4, pp 483-510.
  • S. Helgason, Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators and Spherical Functions. Academic Press, Orlando 1984.
  • A. A. Ilyin and A. N. Filatov, On unique solvability of Navier-Stokes equations on two-dimensional sphere. Dokl. Akad. Nauk SSSR 301 (1988), pp 18-22.
  • V. A. Ivanov, On the Bernstein-Nikolskiy and Favard inequalities on compact homogeneous spaces of rank 1. Usp. Mat. Nauk 38 (1983), pp 179-180.
  • A. I. Kamzolov, On approximation of smooth functions on the sphere $S^{n}$ by Fourier method. Math. Zametki 31 (1982), No. 6, pp 847-853 (Russian).
  • A. I. Kamzolov, On the best approximation of classes of functions $ \mathbf{W}_{p}^{\alpha }(S^{n})$ by polynomials in spherical harmonics. Math. Zametki 32 (1982), No. 3, pp 285-293.
  • A. I. Kamzolov, Bernstein's inequality for fractional derivatives of polynomials in spherical harmonics. Uspekhi Mat. Nauk 39 (1984), No. 2 (236), pp 159-160 (Russian).
  • T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, Heidelberg, New York 1980.
  • A. N. Kolmogorov and S. V. Fomin, Elements of the Function Theory and Functional Analysis. Nauka, Moscow 1976 (Russian).
  • O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incomprehensible Flow. Mathematics and its Applications, Vol. 2, Gordon and Breach, New York 1969.
  • O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics. Nauka, Moscow 1973 (Russian).
  • J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. (French) Dunod; Gauthier-Villars, Paris 1969 (French); Certain Methods for the Solution of Nonlinear Boundary Value Problems. Mir, Moscow 1972 (Russian).
  • P. I. Lizorkin and S. M. Nikolskiy, Approximation of functions on the sphere in $\mathbf{L}_{2}$. Dokl. Akad. Nauk SSSR 271 (1983), No. 5, pp 1059-1063.
  • R. D. Richtmyer, Principles of Advanced Mathematical Physics. Springer-Verlag, New York 1978 (Vol. 1); 1981 (Vol. 2).
  • A. J. Simmons, J. M. Wallace, and G. W. Branstator, Barotropic Wave Propogation and Instability, and Atmospheric Teleconnection Patterns. J. Atmos. Sci. 40 (1983), No. 6, pp 1363-1392.
  • Yu. N. Skiba, Mathematical Problems of the Dynamics of Viscous Barotropic Fluid on a Rotating Sphere. VINITI, Moscow, 1989, 178 pp. (Russian); Indian Inst. Tropical Meteorology, Pune, India, 1990, 211 pp. (English).
  • Yu. N. Skiba, Unique solvability of the equation of a barotropic vortex of viscous fluid in classes of generalized functions on a sphere. Depart. Numer. Mathematics, Akad. Nauk SSSR, Moscow, 1988, 194, 56 pp. (Russian).
  • P. Szeptycki, Equations of Hydrodynamics on Compact Reimannian Manifolds. Bull. L'acad. Pol. Sci., Seria: Sci. Math., Astr., Phys., 21 (1973), No. 4, pp 335-339.
  • P. Szeptycki, Equations of Hydrodynamics on Manifold Diffeomorfic to the Sphere. Bull. L'acad. Pol. Sci., Seria: Sci. Math., Astr., Phys., 21 (1973), No. 4, pp 341-344.
  • R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis. North-Holland, Amsterdam 1984.