Communications in Applied Mathematics and Computational Science

Implications of the choice of predictors for semi-implicit Picard integral deferred correction methods

Anita Layton and Michael Minion

Full-text: Open access

Abstract

High-order semi-implicit Picard integral deferred correction (SIPIDC) methods have previously been proposed for the time-integration of partial differential equations with two or more disparate time scales. The SIPIDC methods studied to date compute a high-order approximation by first computing a provisional solution with a first-order semi-implicit method and then using a similar semi-implicit method to solve a series of correction equations, each of which raises the order of accuracy of the solution by one. This study assesses the efficiency of SIPIDC methods that instead use standard semi-implicit methods with orders two through four to compute the provisional solution. Numerical results indicate that using a method with more than first-order accuracy in the computation of the provisional solution increases the efficiency of SIPIDC methods in some cases. First-order PIDC corrections can improve the efficiency of semi-implicit integration methods based on backward difference formulae (BDF) or Runge–Kutta methods while maintaining desirable stability properties. Finally, the phenomenon of order reduction, which may be encountered in the integration of stiff problems, can be partially alleviated by the use of BDF methods in the computation of the provisional solution.

Article information

Source
Commun. Appl. Math. Comput. Sci., Volume 2, Number 1 (2007), 1-34.

Dates
Received: 5 December 2005
Accepted: 20 October 2006
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.camcos/1513798528

Digital Object Identifier
doi:10.2140/camcos.2007.2.1

Mathematical Reviews number (MathSciNet)
MR2327081

Zentralblatt MATH identifier
1131.65059

Subjects
Primary: 65B05: Extrapolation to the limit, deferred corrections
Secondary: 65L20: Stability and convergence of numerical methods

Keywords
semi-implicit methods deferred correction methods order reduction

Citation

Layton, Anita; Minion, Michael. Implications of the choice of predictors for semi-implicit Picard integral deferred correction methods. Commun. Appl. Math. Comput. Sci. 2 (2007), no. 1, 1--34. doi:10.2140/camcos.2007.2.1. https://projecteuclid.org/euclid.camcos/1513798528


Export citation

References

  • S. Abarbanel, D. Gottlieb, and M. H. Carpenter, “On the removal of boundary errors caused by Runge–Kutta integration of nonlinear partial differential equations”, SIAM J. Sci. Comput. 17 (1996), 777–782.
  • G. Akrivis and Y.-S. Smyrlis, “Implicit-explicit BDF methods for the Kuramoto–Silvashinsky equation”, Appl. Numer. Math. 51 (2004), 151–169.
  • G. Akrivis, M. Crouzeix, and C. Makridakis, “Implicit-explicit multistep finite element methods for nonlinear parabolic equations”, Math. Comp. 67 (1998), 457–477.
  • G. Akrivis, M. Crouzeix, and C. Makridakis, “Implicit-explicit multistep methods for quasilinear parabolic equations”, Numer. Math. 82 (1999), 521–541.
  • B. Alonso-Mallo, I. and Cano, “Spectral/Rosenbrock discretizations without order reduction for linear parabolic problems”, Appl. Numer. Math. 41 (2002), 247–268.
  • I. Alonso-Mallo, “Runge–Kutta methods without order reduction for intial boundary value problems”, Numer. Math. 91 (2002), 577–603.
  • U. M. Ascher, S. J. Ruuth, and B. T. R. Wetton, SIAM J. Numer. Anal. 32:3 (1995), 797–823.
  • U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, “Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations”, Appl. Numer. Math. 25 (1997), 151–167.
  • M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial differential equations”, J. Comput. Phys. 53:3 (1984), 484–512.
  • A. Bourlioux, A. T. Layton, and M. L. Minion, “Higher-order multi-implicit spectral deferred correction methods for problems of reacting flow”, J. Comput. Phys. 189 (2003), 351–376.
  • M. P. Calvo and C. Palencia, “Avoiding the order reduction of Runge–Kutta methods for linear initial boundary value problems”, Math. Comp. 71:240 (2002), 1529–1543.
  • M. P. Calvo, J. de Frutos, and J. Novo, “Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations”, Appl. Numer. Math. 37:4 (2001), 535–549.
  • M. H. Carpenter, D. Gottlieb, S. Abarbanel, and W. S. Don, “The theoretical accuracy of Runge–Kutta time discretizations for the initial-boundary value problem: a study of the boundary error”, SIAM J. Sci. Comput. 16:6 (1995), 1241–1252.
  • A. Dutt, L. Greengard, and V. Rokhlin, “Spectral deferred correction methods for ordinary differential equations”, BIT 40:2 (2000), 241–266.
  • B. L. Ehle, On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems, Dept. Applied Analysis and Computer Sci., Research Rpt. CSRR 2010, University of Waterloo, 1969.
  • J. Frank, W. Hundsdorfer, and J. G. Verwer, “On the stability of implicit-explicit linear multistep methods”, Appl. Numer. Math. 25:2-3 (1997), 193–205. Special issue on time integration (Amsterdam, 1996).
  • C. W. Gear, Numerical initial value problems in ordinary differential equations, Prentice-Hall, Englewood Cliffs, N.J., 1971.
  • E. Hairer and G. Wanner, Solving ordinary differential equations. II, Springer Series in Computational Mathematics 14, Springer, Berlin, 1991. Stiff and differential-algebraic problems.
  • K. J. in't Hout, “On the contractivity of implicit-explcit linear multistep methods”, Appl. Numer. Math. 42 (2002), 201–212.
  • C. A. Kennedy and M. H. Carpenter, “Additive Runge–Kutta schemes for convection-diffusion-reaction equations”, Appl. Numer. Math. 44:1-2 (2003), 139–181.
  • A. T. Layton and M. L. Minion, “Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics”, J. Comput. Phys. 194:2 (2004), 697–715.
  • A. T. Layton and M. L. Minion, “Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations”, BIT 45:2 (2005), 341–373.
  • S. F. Liotta, V. Romano, and G. Russo, “Central schemes for balance laws of relaxation type”, SIAM J. Numer. Anal. 38:4 (2000), 1337–1356.
  • M. L. Minion, “Semi-implicit spectral deferred correction methods for ordinary differential equations”, Commun. Math. Sci. 1:3 (2003), 471–500.
  • M. L. Minion, “Semi-implicit projection methods for incompressible flow based on spectral deferred corrections”, Appl. Numer. Math. 48:3-4 (2004), 369–387. Workshop on Innovative Time Integrators for PDEs.
  • L. Pareschi and G. Russo, “Implicit-explicit Runge–Kutta schemes for stiff systems of differential equations”, pp. 269–288 in Recent trends in numerical analysis, Adv. Theory Comput. Math. 3, Nova Sci. Publ., Huntington, NY, 2001.
  • L. Pareschi and G. Russo, “Implicit-explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation”, J. Sci. Comput. 25:1-2 (2005), 129–155.
  • D. Pathria, “The correct formulation of intermediate boundary conditions for Runge–Kutta time integration of initial-boundary value problems”, SIAM J. Sci. Comput. 18:5 (1997), 1255–1266.
  • L. Portero, J. C. Jorge, and B. Bujanda, “Avoiding order reduction of fractional step Runge–Kutta discretizations for linear time dependent coefficient parabolic problems”, Appl. Numer. Math. 48:3-4 (2004), 409–424. Workshop on Innovative Time Integrators for PDEs.
  • A. Prothero and A. Robinson, Math. Comp. 28 (1974), 145–162.
  • J. M. Sanz-Serna, J. G. Verwer, and W. H. Hundsdorfer, “Convergence and order reduction of Runge–Kutta schemes applied to evolutionary problems in partial differential equations”, Numer. Math. 50:4 (1987), 405–418.
  • J. W. Shen and X. Zhong, “Semi-implicit Runge–Kutta schemes for the non-autonomous differential equations in reactive flow computations”, in Proceedings of the 27th AIAA Fluid Dynamics Conference (New Orleans, 1996), Amer. Inst. Aeronautics and Astronautics, June 1996.
  • O. B. Widlund, “A note on unconditionally stable linear multistep methods”, Nordisk Tidskr. Informations-Behandling 7 (1967), 65–70.
  • X. Zhong, “Additive semi-implicit Runge–Kutta methods for computing high-speed nonequilibrium reactive flows”, J. Comput. Phys. 128:1 (1996), 19–31.