Brazilian Journal of Probability and Statistics

Asymptotic predictive inference with exchangeable data

Patrizia Berti, Luca Pratelli, and Pietro Rigo

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $(X_{n})$ be a sequence of random variables, adapted to a filtration $(\mathcal{G}_{n})$, and let $\mu_{n}=(1/n)\sum_{i=1}^{n}\delta_{X_{i}}$ and $a_{n}(\cdot)=P(X_{n+1}\in\cdot|\mathcal{G}_{n})$ be the empirical and the predictive measures. We focus on \begin{equation*}\Vert \mu_{n}-a_{n}\Vert =\mathop{\mathrm{sup}}_{B\in\mathcal{D}}\vert\mu_{n}(B)-a_{n}(B)\vert,\end{equation*} where $\mathcal{D}$ is a class of measurable sets. Conditions for $\Vert \mu_{n}-a_{n}\Vert \rightarrow0$, almost surely or in probability, are given. Also, to determine the rate of convergence, the asymptotic behavior of $r_{n}\Vert \mu_{n}-a_{n}\Vert $ is investigated for suitable constants $r_{n}$. Special attention is paid to $r_{n}=\sqrt{n}$ and $r_{n}=\sqrt{\frac{n}{\log\log n}}$. The sequence $(X_{n})$ is exchangeable or, more generally, conditionally identically distributed.

Article information

Source
Braz. J. Probab. Stat., Volume 32, Number 4 (2018), 815-833.

Dates
Received: March 2016
Accepted: May 2017
First available in Project Euclid: 17 August 2018

Permanent link to this document
https://projecteuclid.org/euclid.bjps/1534492903

Digital Object Identifier
doi:10.1214/17-BJPS367

Mathematical Reviews number (MathSciNet)
MR3845031

Zentralblatt MATH identifier
06979602

Keywords
Bayesian consistency conditional identity in distribution empirical measure exchangeability predictive measure random probability measure

Citation

Berti, Patrizia; Pratelli, Luca; Rigo, Pietro. Asymptotic predictive inference with exchangeable data. Braz. J. Probab. Stat. 32 (2018), no. 4, 815--833. doi:10.1214/17-BJPS367. https://projecteuclid.org/euclid.bjps/1534492903


Export citation

References

  • Aldous, D. J. (1985). Exchangeability and Related Topics, Ecole de Probabilites de Saint-Flour XIII. Lect. Notes in Math. 1117. Berlin: Springer.
  • Berti, P., Crimaldi, I., Pratelli, L. and Rigo, P. (2009). Rate of convergence of predictive distributions for dependent data. Bernoulli 15, 1351–1367.
  • Berti, P., Mattei, A. and Rigo, P. (2002). Uniform convergence of empirical and predictive measures. Atti Sem. Mat. Fis. Univ. Modena 50, 465–477.
  • Berti, P., Pratelli, L. and Rigo, P. (2004). Limit theorems for a class of identically distributed random variables. Ann. Probab. 32, 2029–2052.
  • Berti, P., Pratelli, L. and Rigo, P. (2012). Limit theorems for empirical processes based on dependent data. Electron. J. Probab. 17, 1–18.
  • Berti, P., Pratelli, L. and Rigo, P. (2013). Exchangeable sequences driven by an absolutely continuous random measure. Ann. Probab. 41, 2090–2102.
  • Berti, P. and Rigo, P. (1997). A Glivenko–Cantelli theorem for exchangeable random variables. Statist. Probab. Lett. 32, 385–391.
  • Blackwell, D. and Dubins, L. E. (1962). Merging of opinions with increasing information. Ann. Math. Statist. 33, 882–886.
  • Cifarelli, D. M., Dolera, E. and Regazzini, E. (2016). Frequentistic approximations to Bayesian prevision of exchangeable random elements. Internat. J. Approx. Reason. 78, 138–152.
  • Cifarelli, D. M. and Regazzini, E. (1996). De Finetti’s contribution to probability and statistics. Statist. Sci. 11, 253–282.
  • Crane, H. (2016). The ubiquitous Ewens sampling formula. Statist. Sci. 31, 1–19.
  • De Blasi, P., Favaro, S., Lijoi, A., Mena, R. H., Prunster, I. and Ruggiero, M. (2015). Are Gibbs-type priors the most natural generalization of the Dirichlet process? IEEE Trans. Pattern Anal. Machine Intell. 37, 212–229.
  • Diaconis, P. and Freedman, D. (1986). On the consistency of Bayes estimates. Ann. Statist. 14, 1–26.
  • Dudley, R. M. (1999). Uniform Central Limit Theorems. Cambridge: Cambridge University Press.
  • Efron, B. (2003). Robbins, empirical Bayes and microarrays. Ann. Statist. 31, 366–378.
  • Fortini, S., Ladelli, L. and Regazzini, E. (2000). Exchangeability, predictive distributions and parametric models. Sankhya A 62, 86–109.
  • Gaenssler, P. and Stute, W. (1979). Empirical processes: A survey of results for independent and identically distributed random variables. Ann. Probab. 7, 193–243.
  • Ghosal, S. and van der Vaart, A. (2017). Fundamentals of Nonparametric Bayesian Inference. Cambridge: Cambridge University Press.
  • Hjort, N. L., Holmes, C., Muller, P. and Walker, S. G. (2010). Bayesian Nonparametrics. Cambridge: Cambridge University Press.
  • Kingman, J. F. C. (1975). Random discrete distributions (with discussion). J. Royal Stat. Soc. B 37, 1–22.
  • Kuelbs, J. and Dudley, R. M. (1980). Log log laws for empirical measures. Ann. Probab. 8, 405–418.
  • Mijoule, G., Peccati, G. and Swan, Y. (2016). On the rate of convergence in de Finetti’s representation theorem. ALEA (Lat. Am. J. Probab. Math. Stat.) 13, 1165–1187.
  • Phadia, E. G. (2016). Prior Processes and Their Applications, 2nd ed. Berlin: Springer.
  • Pitman, J. and Yor, M. (1997). The two-parameter Poisson–Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25, 855–900.
  • Robbins, H. (1964). The empirical Bayes approach to statistical decision problems. Ann. Math. Statist. 35, 1–20.
  • Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Stat. Sinica 4, 639–650.
  • van der Vaart, A. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Berlin: Springer.
  • Zabell, S. L. (2005). Symmetry and Its Discontents (Essays on the History of Inductive Probability). Cambridge: Cambridge University Press.