Brazilian Journal of Probability and Statistics

[RETRACTED] On Hilbert’s 8th problem

Nicholas G. Polson

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The paper is being retracted by the author due to an erratum in the application of Grosswald’s result on the existence of $m_G(s)$, which invalidates the proof of Theorem 2.

Article information

Braz. J. Probab. Stat., Volume 32, Number 3 (2018), 670-678.

Received: September 2017
Accepted: January 2018
First available in Project Euclid: 8 June 2018

Permanent link to this document

Digital Object Identifier

RH GGC zeta function


Polson, Nicholas G. [RETRACTED] On Hilbert’s 8th problem. Braz. J. Probab. Stat. 32 (2018), no. 3, 670--678. doi:10.1214/18-BJPS392.

Export citation


  • Bondesson, L. (1992). Generalised Gamma Convolutions and Related Classes of Distributions and Densities. New York: Springer.
  • Grosswald, E. (1964). Sur la fonction de Riesz. Séminaire Delange-Pisot-Poitou. Théorie des nombres, 6(1), 1–11.
  • Pólya, G. (1926). Bemerkung Über die Integraldarstellung der Riemannschen $\xi$-Funktion. Acta Mathematica 48, 305–317.
  • Riemann, B. (1859). Über die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsberichte der Berliner Akademie.
  • Roynette, B. and Yor, M. (2005). Infinitely divisible Wald’s couples: Examples linked with the Euler gamma and the Riemann zeta functions. Annales de L’Institut Fourier 55, 1219–1283.
  • Titchmarsh, E. C. (1974). The Theory of the Riemann Zeta-Function. Oxford: Oxford University Press.

See also