Brazilian Journal of Probability and Statistics

Likelihood-based inference for population size in a capture–recapture experiment with varying probabilities from occasion to occasion

Luis Ernesto Bueno Salasar, José Galvão Leite, and Francisco Louzada

Full-text: Open access

Abstract

The estimation of the size of a population is, in general, performed using capture–recapture experiments. In this paper, we consider a closed population capture–recapture model in which individuals are captured independently and with the same probability in each sampling occasion, but the probabilities may vary from occasion to occasion. The unknown number of individuals is the parameter of interest, while the capture probabilities are the nuisance ones. Four likelihood functions free of nuisance parameters, namely the profile, conditional, uniform and Jeffrey’s integrated likelihood functions are derived and procedures for point and interval estimation are discussed. The estimation of population size is illustrated on a real dataset. The frequentist properties of the estimators are evaluated by means of a simulation study. The Jeffrey’s integrated likelihood achieved the best performance over all considered estimators for both point and interval estimation, particularly in situations with little information with small number of elements, small capture probabilities and small number of capture occasions.

Article information

Source
Braz. J. Probab. Stat., Volume 30, Number 1 (2016), 47-69.

Dates
Received: June 2013
Accepted: July 2014
First available in Project Euclid: 19 January 2016

Permanent link to this document
https://projecteuclid.org/euclid.bjps/1453211802

Digital Object Identifier
doi:10.1214/14-BJPS255

Mathematical Reviews number (MathSciNet)
MR3453514

Zentralblatt MATH identifier
1381.62029

Keywords
Capture–recapture conditional likelihood Jeffrey’s integrated likelihood population size profile likelihood simulation uniform integrated likelihood

Citation

Salasar, Luis Ernesto Bueno; Leite, José Galvão; Louzada, Francisco. Likelihood-based inference for population size in a capture–recapture experiment with varying probabilities from occasion to occasion. Braz. J. Probab. Stat. 30 (2016), no. 1, 47--69. doi:10.1214/14-BJPS255. https://projecteuclid.org/euclid.bjps/1453211802


Export citation

References

  • Amstrup, S. C., McDonald, T. L. and Manly, B. F. J., eds. (2003). Handbook of Capture–Recapture Analysis. London: John Wiley.
  • Basu, D. (1977). On the elimination of nuisance parameters. Journal of the American Statistical Association 72, 355–366.
  • Basu, S. and Ebrahimi, N. (2001). Bayesian capture–recapture methods for error detection and estimation of population size: Heterogeneity and dependence. Biometrika 88, 269–279.
  • Berger, J. O., Liseo, B. and Wolpert, L. (1999). Integrated likelihood methods for eliminating nuisance parameters. Statistical Science 14, 1–28.
  • Boender, C. G. E. and Rinooy Kan, A. H. G. (1987). A multinomial Bayesian approach to the estimation of population and vocabulary size. Biometrika 74, 849–856.
  • Bolfarine, H., Leite, J. G. and Rodrigues, J. (1992). On the estimation of the size of a finite and closed population. Biometrical Journal 34, 577–593.
  • Carle, F. L. and Strub, M. R. (1978). A new method for estimating population size from removal data. Biometrics 34, 621–630.
  • Castledine, B. J. (1981). A Bayesian analysis of multiple-recapture sampling for a closed population. Biometrika 67, 197–210.
  • Chao, A. (1989). Estimating population size for sparse data in capture–recapture data with unequal catchability. Biometrics 43, 783–791.
  • Chao, A. (2001). An overview of closed capture–recapture models. Journal of Agricultural, Biological, and Environmental Statistics 6, 158–175.
  • Chao, A., Tsay, P. K., Lin, S.-H., Shau, W.-Y. and Chao, D.-Y. (2001). The applications of capture–recapture models to epidemiological data. Statistics in Medicine 20, 3123–3157.
  • Chapman, D. G. (1954). The estimation of biological populations. The Annals of Mathematical Statistics 25, 1–15.
  • Cormack, R. M. (1968). The statistics of capture–recapture methods. Oceanography and Marine Biology 6, 455–506.
  • Cormack, R. M. (1989). Log-linear models for capture–recapture. Biometrics 45, 395–413.
  • Cormack, R. M. (1992). Interval estimation for mark–recapture studies of closed populations. Biometrics 48, 567–576.
  • Cox, D. R. (1975). Partial likelihood. Biometrika 62, 269–276.
  • Darroch, J. N. (1958). The multiple-recapture census: I. Estimation of a closed population. Biometrika 45, 343–359.
  • Darroch, J. N. (1959). The multiple-recapture census: II. Estimation when there is immigration or death. Biometrika 46, 336–351.
  • Evans, M. A., Kim, H. and O’Brien, T. E. (1996). An application of profile-likelihood based confidence interval to capture–recapture estimators. Journal of Agricultural, Biological and Environmental Statistics 1, 131–140.
  • Fegatelli, D. A. and Tardella, L. (2013). Improved inference on capture recapture models with behavioural effects. Statistical Methods and Applications 22, 45–66.
  • Garthwaite, P. H. and Buckland, S. T. (1990). Analysis of a multiple-recapture census by computing conditional probabilities. Biometrics 46, 231–238.
  • George, E. I. and Robert, C. P. (1992). Capture–recapture estimation via Gibbs sampling. Biometrika 79, 677–683.
  • Gerking, S. D. (1953). Vital statistics of the fish population of Gordy Lake, Indiana. Transactions of the American Fisheries Society 82, 48–67.
  • Jolly, G. M. (1965). Explicit estimates from capture–recapture data with both death and immigration-stochastic model. Biometrika 52, 225–247.
  • Laplace, P. S. (1783). Sur les naissances, les mariages, et les morts. Paris.
  • Lee, A. J. (2002). Effect of list errors on the estimation of population size. Biometrics 58, 185–191.
  • Lee, A. J., Seber, G. A. F., Holden, J. K. and Huakau, J. T. (2001). Capture–recapture, epidemiology, and list mismatches: Several lists. Biometrics 57, 707–713.
  • Leite, J. G., Oishi, J. and Pereira, C. A. B. (1987). Exact maximum likelihood estimate of a finite population size. Probability in the Engineering and Informational Sciences 1, 225–236.
  • Leite, J. G., Oishi, J. and Pereira, C. A. B. (1988). A note on the exact maximum likelihood estimation of the size of a finite and closed population. Biometrika 75, 178–180.
  • Lincoln, F. C. (1930). Calculating waterfowl abundance on the basis of banding returns. Technical report, U.S. Department of Agriculture Circular.
  • McDonald, J. F. and Palanacki, D. (1989). Interval estimation of the size of a small population from a mark–recapture experiment. Biometrics 45, 1223–1231.
  • Nayak, T. K. (1988). Estimating population size by recapture sampling. Biometrika 75, 113–120.
  • Norris, J. L. and Pollock, K. H. (1996). Nonparametric MLE under two closed capture–recapture models with heterogeneity. Biometrics 52, 639–649.
  • Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978). Statistical inference from capture data on closed animal populations. Wildlife Monographs 62, 3–135.
  • Petersen, C. G. (1896). The yearly immigration of young plaice into the Limfjord from the German Sea. Technical report, Report of the Danish Biological Station.
  • Pickands, J. and Raghavachari, M. (1974). Exact and asymptotic inference for the size of a population. Biometrika 74, 355–363.
  • Pledger, S. (2000). Unified maximum likelihood estimates for closed capture–recapture models using mixtures. Biometrics 56, 434–442.
  • Pollock, K. H. (2000). Capture–recapture models. Journal of the American Statistical Association 95, 293–296.
  • Ricker, W. E. (1975). Computation and interpretation of biological statistics of fish populations. Technical report, Department of the Environment, Fisheries and Marine Service.
  • Sanathanan, L. (1972a). Estimating the size of a multinomial population. The Annals of Mathematical Statistics 43, 142–152.
  • Sanathanan, L. (1972b). Models and estimation methods in visual scanning experiments. Technometrics 14, 813–829.
  • Sanathanan, L. (1973). A comparison of some models in visual scanning experiments. Technometrics 15, 67–78.
  • Schwarz, C. J. and Seber, G. A. F. (1999). Estimating animal abundance: Review III. Statistical Science 14, 427–456.
  • Seber, G. A. F. (1965). A note on multiple recapture census. Biometrika 52, 249–259.
  • Seber, G. A. F. (1982). The Estimation of Animal Abundance and Related Parameters. London: John Wiley.
  • Seber, G. A. F. (1986). A review of estimating animal abundance. Biometrics 42, 267–292.
  • Seber, G. A. F. (1992). A review of estimating animal abundance II. International Statistical Review 60, 129–166.
  • Seber, G. A. F., Huakau, J. T. and Simmons, D. (2000). Capture–recapture, epidemiology and lists mismatches: Two lists. Biometrics 56, 1227–1232.
  • Seber, G. A. F. and Whale, J. F. (1970). The removal method for two and three samples. Biometrika 26, 393–400.
  • Smith, P. J. (1988). Bayesian methods for capture–recapture surveys. Biometrics 44, 1177–1189.
  • Smith, P. J. (1991). Bayesian analyses for a multiple capture–recapture model. Biometrika 78, 399–407.
  • Sprott, D. A. (1981). Maximum likelihood applied to a capture and recapture model. Biometrics 37, 371–375.
  • Thisted, R. and Efron, B. (1987). Did Shakespeare write a newly-discovery poem? Biometrika 74, 445–455.
  • Viveros, R. and Sprott, D. A. (1986). Conditional inference and maximum likelihood in a capture–recapture model. Communications in Statistics 15, 1035–1046.
  • Wang, X., He, C. Z. and Sun, D. (2007). Bayesian population estimation for small sample capture–recapture data using noninformative prior. Journal of Statistical Planning and Inference 137, 1099–1118.
  • Yip, P. (1991). A martingale estimating equation for capture–recapture experiment in discrete time. Biometrics 47, 1081–1088.