Brazilian Journal of Probability and Statistics

Finite exclusion process and independent random walks

E. D. Andjel

Full-text: Open access

Abstract

We show that the total variational distance between a process of two particles interacting by exclusion and a process of two independent particles goes to $0$ as time goes to infinity, when the underlying one particle system is a symmetric random walk on $\mathbb{Z}^{d}$ with finite second moments. Upper bounds for the speed of convergence are given.

Article information

Source
Braz. J. Probab. Stat., Volume 27, Number 2 (2013), 227-244.

Dates
First available in Project Euclid: 21 February 2013

Permanent link to this document
https://projecteuclid.org/euclid.bjps/1361455037

Digital Object Identifier
doi:10.1214/11-BJPS170

Mathematical Reviews number (MathSciNet)
MR3028806

Zentralblatt MATH identifier
06365961

Keywords
Exclusion system random walks

Citation

Andjel, E. D. Finite exclusion process and independent random walks. Braz. J. Probab. Stat. 27 (2013), no. 2, 227--244. doi:10.1214/11-BJPS170. https://projecteuclid.org/euclid.bjps/1361455037


Export citation

References

  • De Masi A. and Presutti E. (1983). Probability estimates for symmetric simple exclusion random walks. Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques 19, 71–85.
  • Ferrari P. A., Presutti E., Scacciatelli E. and Vares M. E. (1991). The symmetric simple exclusion process I Probability estimates. Stochastic Processes and Their Applications 39, 89–105.
  • Konno N. (1995). Asymptotic behaviour of basic contact process with rapid stirring. Journal of Theoretical Probability 8, 833–876.
  • Liggett T. M. (1985). Interacting Particle Systems. New York: Springer-Verlag.
  • Liggett T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Berlin: Springer-Verlag.
  • Spitzer F. (1976). Principle of Random Walk, 2nd ed. New York: Springer-Verlag.