Brazilian Journal of Probability and Statistics

Finite exclusion process and independent random walks

E. D. Andjel

Full-text: Open access


We show that the total variational distance between a process of two particles interacting by exclusion and a process of two independent particles goes to $0$ as time goes to infinity, when the underlying one particle system is a symmetric random walk on $\mathbb{Z}^{d}$ with finite second moments. Upper bounds for the speed of convergence are given.

Article information

Braz. J. Probab. Stat., Volume 27, Number 2 (2013), 227-244.

First available in Project Euclid: 21 February 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Exclusion system random walks


Andjel, E. D. Finite exclusion process and independent random walks. Braz. J. Probab. Stat. 27 (2013), no. 2, 227--244. doi:10.1214/11-BJPS170.

Export citation


  • De Masi A. and Presutti E. (1983). Probability estimates for symmetric simple exclusion random walks. Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques 19, 71–85.
  • Ferrari P. A., Presutti E., Scacciatelli E. and Vares M. E. (1991). The symmetric simple exclusion process I Probability estimates. Stochastic Processes and Their Applications 39, 89–105.
  • Konno N. (1995). Asymptotic behaviour of basic contact process with rapid stirring. Journal of Theoretical Probability 8, 833–876.
  • Liggett T. M. (1985). Interacting Particle Systems. New York: Springer-Verlag.
  • Liggett T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Berlin: Springer-Verlag.
  • Spitzer F. (1976). Principle of Random Walk, 2nd ed. New York: Springer-Verlag.