Brazilian Journal of Probability and Statistics

Nonparametric density estimation for functional data by delta sequences

B. L. S. Prakasa Rao

Full-text: Open access

Abstract

We consider the problem of estimation of density function by the method of delta sequences for functional data with values in an infinite dimensional separable Banach space.

Article information

Source
Braz. J. Probab. Stat., Volume 24, Number 3 (2010), 468-478.

Dates
First available in Project Euclid: 2 August 2010

Permanent link to this document
https://projecteuclid.org/euclid.bjps/1280754496

Digital Object Identifier
doi:10.1214/09-BJPS104

Mathematical Reviews number (MathSciNet)
MR2719697

Zentralblatt MATH identifier
1298.62063

Keywords
Nonparametric density estimation functional data method of delta sequences probability measure on a Banach space

Citation

Prakasa Rao, B. L. S. Nonparametric density estimation for functional data by delta sequences. Braz. J. Probab. Stat. 24 (2010), no. 3, 468--478. doi:10.1214/09-BJPS104. https://projecteuclid.org/euclid.bjps/1280754496


Export citation

References

  • Craswell, K. J. (1965). Density estimation in a topological group. Annals of Mathematical Statistics 36 1047–1048.
  • Dabo-Niang, S. (2004). Kernel density estimator in an infinite-dimensional space with a rate of convergence in the case of diffusion process. Applied Mathematics Letters 17 381–386.
  • Dabo-Niang, S., Ferraty, F. and Vieu, P. (2006). Mode estimation for functional random variable and its application for curve classification. Far East Journal of Theoretical Statistics 18 93–119.
  • Efromovich, S. (1999). Nonparametric Curve Estimation: Methods, Theory and Applications. Springer, New York.
  • Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and Practice. Springer, New York.
  • Ferraty, F. and Vieu, P. (2008). Erratum of: ‘Non-parametric models for functional data, with application in regression, time-series prediction and curve estimation.’ Journal of Nonparametric Statistics 20 187–189.
  • Gasser, T., Hall, P. and Presnell, B. (1998). Nonparametric estimation of the mode of a distribution of random curves. Journal of the Royal Statistical Society Series B. Statistical Methodology 60 681–691.
  • Geffroy, J. (1974). Sur l’estimation d’une densite dans un espace metrique. C. R. Acad. Sci. Paris Ser. A-B 278 A 1449–1452.
  • Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58 13–30.
  • Masry, E. (2005). Nonparametric regression estimation for dependent functional data; asymptotic normality. Stochastic Processes and Their Applications 115 155–177.
  • Prakasa Rao, B. L. S. (1978). Density estimation for Markov processes using delta sequences. Annals of the Institute of Statistical Mathematics 30 321–328.
  • Prakasa Rao, B. L. S. (1979a). Nonparametric estimation for continuous time Markov processes via delta families. Publications de l’Institut de Statistique de l’Université de Paris 24 79–97.
  • Prakasa Rao, B. L. S. (1979b). Sequential nonparametric estimation of density via delta sequences. Sankhyā, Series A 41 82–94.
  • Prakasa Rao, B. L. S. (1983). Nonparametric Functional Estimation. Academic Press, New York.
  • Prakasa Rao, B. L. S. (1999a). Nonparametric functional estimation: An overview. In Asymptotics, Nonparametrics and Time Series (S. Ghosh, ed.) 461–509. Marcel Dekker, New York.
  • Prakasa Rao, B. L. S. (1999b). Statistical Inference for Diffusion Type Processes. Arnold, London and Oxford Univ. Press, New York.
  • Prakasa Rao, B. L. S. (1999c). Semimartingales and Their Statistical Inference. Chapman and Hall, London and CRC Press, Boca Raton.
  • Prakasa Rao, B. L. S. (2009). Nonparametric estimation for functional data via wavelets. Communications in Statistics—Theory and Methods: Special Issue in Honor of Prof. M. Akahira. To appear.
  • Rachdi, M and Vieu, P. (2007). Nonparametric regression for functional data: Automatic smoothing parameter selection. Journal Statistical Planning and Inference 137 2784–2801.
  • Ramsay, J. and Silverman, B. W. (2005). Functional Data Analysis. Springer, New York.
  • Ramsay, J. and Silverman, B. W. (2002). Applied Functional Data Analysis: Methods and Case Studies. Springer, New York.
  • Silverman, B. W. (1986). Density Estimation and Data Analysis. Chapman and Hall, London.
  • Susarla, V. and Walter, G. (1981). Estimation of a multivariate density function using delta sequences. The Annals of Statistics 9 347–355.
  • Walter, G. and Blum, G. J. (1979). Probability density estimation using delta sequences. The Annals of Statistics 7 328–340.
  • Wertz, W. (1972). Schatzfolgen fur dichten aub topolgischen gruppen. Operation Res. Verfahren 14 247–257.