Banach Journal of Mathematical Analysis
- Banach J. Math. Anal.
- Volume 13, Number 3 (2019), 675-696.
Boundedness of Cesàro and Riesz means in variable dyadic Hardy spaces
Kristóf Szarvas and Ferenc Weisz
Abstract
We consider two types of maximal operators. We prove that, under some conditions, each maximal operator is bounded from the classical dyadic martingale Hardy space to the classical Lebesgue space and from the variable dyadic martingale Hardy space to the variable Lebesgue space . Using this, we can prove the boundedness of the Cesàro and Riesz maximal operator from to and from the variable Hardy–Lorentz space to the variable Lorentz space . As a consequence, we can prove theorems about almost everywhere and norm convergence.
Article information
Source
Banach J. Math. Anal., Volume 13, Number 3 (2019), 675-696.
Dates
Received: 27 June 2018
Accepted: 4 November 2018
First available in Project Euclid: 31 May 2019
Permanent link to this document
https://projecteuclid.org/euclid.bjma/1559268029
Digital Object Identifier
doi:10.1215/17358787-2018-0037
Mathematical Reviews number (MathSciNet)
MR3978943
Zentralblatt MATH identifier
07083767
Subjects
Primary: 42B30: $H^p$-spaces
Secondary: 42C10: Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.) 60G42: Martingales with discrete parameter 60G46: Martingales and classical analysis 46E30: Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Keywords
variable Hardy spaces variable Hardy–Lorentz spaces Cesàro means Riesz means Cesàro and Riesz maximal operator boundedness
Citation
Szarvas, Kristóf; Weisz, Ferenc. Boundedness of Cesàro and Riesz means in variable dyadic Hardy spaces. Banach J. Math. Anal. 13 (2019), no. 3, 675--696. doi:10.1215/17358787-2018-0037. https://projecteuclid.org/euclid.bjma/1559268029