Banach Journal of Mathematical Analysis
- Banach J. Math. Anal.
- Volume 12, Number 2 (2018), 294-313.
Calderón–Lozanovskii interpolation on quasi-Banach lattices
Yves Raynaud and Pedro Tradacete
Abstract
We consider the Calderón–Lozanovskii construction in the context of quasi-Banach lattices, and we provide an extension of a result by Ovchinnikov concerning the associated interpolation methods and . Our approach is based on the interpolation properties of -regular operators between quasi-Banach lattices.
Article information
Source
Banach J. Math. Anal., Volume 12, Number 2 (2018), 294-313.
Dates
Received: 12 December 2016
Accepted: 1 April 2017
First available in Project Euclid: 5 December 2017
Permanent link to this document
https://projecteuclid.org/euclid.bjma/1512464419
Digital Object Identifier
doi:10.1215/17358787-2017-0053
Mathematical Reviews number (MathSciNet)
MR3779715
Zentralblatt MATH identifier
06873502
Subjects
Primary: 46M35: Abstract interpolation of topological vector spaces [See also 46B70]
Secondary: 46B42: Banach lattices [See also 46A40, 46B40] 47L20: Operator ideals [See also 47B10]
Keywords
quasi-Banach lattice interpolation Calderón–Lozanovskii spaces
Citation
Raynaud, Yves; Tradacete, Pedro. Calderón–Lozanovskii interpolation on quasi-Banach lattices. Banach J. Math. Anal. 12 (2018), no. 2, 294--313. doi:10.1215/17358787-2017-0053. https://projecteuclid.org/euclid.bjma/1512464419