## Banach Journal of Mathematical Analysis

### Characterizations of Jordan left derivations on some algebras

#### Abstract

A linear mapping $\delta$ from an algebra $\mathcal{A}$ into a left $\mathcal{A}$-module $\mathcal{M}$ is called a Jordan left derivation if $\delta(A^{2})=2A\delta(A)$ for every $A\in\mathcal{A}$. We prove that if an algebra $\mathcal{A}$ and a left $\mathcal{A}$-module $\mathcal{M}$ satisfy one of the following conditions—(1) $\mathcal{A}$ is a $C^{*}$-algebra and $\mathcal{M}$ is a Banach left $\mathcal{A}$-module; (2) $\mathcal{A}=\operatorname {Alg}\mathcal{L}$ with $\cap\{L_{-}:L\in\mathcal{J}_{\mathcal{L}}\}=(0)$ and $\mathcal{M}=B(X)$; and (3) $\mathcal{A}$ is a commutative subspace lattice algebra of a von Neumann algebra $\mathcal{B}$ and $\mathcal{M}=B(\mathcal{H})$—then every Jordan left derivation from $\mathcal{A}$ into $\mathcal{M}$ is zero. $\delta$ is called left derivable at $G\in\mathcal{A}$ if $\delta(AB)=A\delta(B)+B\delta(A)$ for each $A,B\in\mathcal{A}$ with $AB=G$. We show that if $\mathcal{A}$ is a factor von Neumann algebra, $G$ is a left separating point of $\mathcal{A}$ or a nonzero self-adjoint element in $\mathcal{A}$, and $\delta$ is left derivable at $G$, then $\delta\equiv0$.

#### Article information

Source
Banach J. Math. Anal., Volume 10, Number 3 (2016), 466-481.

Dates
Accepted: 18 August 2015
First available in Project Euclid: 13 May 2016

https://projecteuclid.org/euclid.bjma/1463153911

Digital Object Identifier
doi:10.1215/17358787-3599675

Mathematical Reviews number (MathSciNet)
MR3504180

Zentralblatt MATH identifier
1351.47027

#### Citation

An, Guangyu; Ding, Yana; Li, Jiankui. Characterizations of Jordan left derivations on some algebras. Banach J. Math. Anal. 10 (2016), no. 3, 466--481. doi:10.1215/17358787-3599675. https://projecteuclid.org/euclid.bjma/1463153911

#### References

• [1] J. Alaminos, M. Brešar, J. Extermera, and R. Villena, Characterizing Jordan maps on $C^{*}$-algebras through zero products, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 3, 543–555.
• [2] A. Bikchentaev, On representation of elements of a von Neumann algebra in the form of finite sums of products of projections, Sibirsk. Mat. Zh. 46 (2005), no. 1, 24–34.
• [3] M. Brešar, Jordan derivations on semiprime rings, Bull. Aust. Math. Soc. 104 (1988), no. 4, 1003–1006.
• [4] M. Brešar and J. Vukman, Jordan derivations on prime rings, Bull. Aust. Math. Soc. 37 (1988), no. 3, 321–322.
• [5] M. Brešar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), no. 1, 7–16.
• [6] J. Cuntz, On the continuity of Semi-Norms on operator algebras, Math. Ann. 220 (1976), no. 2, 171–183.
• [7] J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), no. 2, 321–324.
• [8] H. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monog. Ser. 24, Oxford Univ. Press, New York, 2000.
• [9] H. Dales, F. Ghahramani, and N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), no. 1, 19–54.
• [10] Q. Deng, On Jordan left derivations, Math. J. Okayama Univ. 34 (1992), 145–147.
• [11] S. Goldstein and A. Paszkiewicz, Linear combinations of projections in von Neumann algebras, Proc. Amer. Math. Soc. 116 (1992), no. 1, 175–183.
• [12] J. Guo and J. Li, On centralizers of reflexive algebras, Aequationes Math. 84 (2012), no. 1, 1–12.
• [13] I. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104–1110.
• [14] R. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Algebras, I, Pure Appl. Math. 100, Academic Press, New York, 1983.
• [15] I. Kosi-Ulbl and J. Vukman, A note on $(m,n)$-Jordan derivations on semiprime rings and Banach algebras, Bull. Aust. Math. Soc. 93 (2016), no. 2, 231–237.
• [16] J. Li and J. Zhou, Jordan left derivations and some left derivable maps, Oper. Matrices 4 (2010), 127–138.
• [17] W. Longstaff, Strongly reflexive lattices, J. Lond. Math. Soc. (2) 11 (1975), no. 4, 491–498.
• [18] W. Longstaff and O. Panaia, $\mathcal{J}$-subspace lattices and subspace $\mathcal{M}$-bases, Studia Math. 139 (2000), no. 3, 197–212.
• [19] T. Ogasawara, Finite dimensionality of certain Banach algebras, J. Sci. Hiroshima Univ. Ser. A 17 (1954), 359–364.
• [20] Z. Pan, Derivable maps and derivational points, Linear Algebra Appl. 436 (2012), no. 11, 4251–4260.
• [21] K. Park, Jordan higher left derivaitons and commutativity in prime rings, J. Chungcheong Math. Soc. 23 (2010), 741–748.
• [22] J. Ringrose, Automatically continuous of derivations of operator algebras, J. Lond. Math. Soc. (2) 5 (1972), no. 3, 432–438.
• [23] J. Vukman, On left Jordan derivations of rings and Banach algebras, Aequations Math. 75 (2008), no. 3, 260–266.
• [24] J. Vukman, On $(m,n)$-Jordan derivations and commutativity of prime rings, Demonstr. Math. 41 (2008), no. 4, 773–778.