Banach Journal of Mathematical Analysis

Schatten-class generalized Volterra companion integral operators

Tesfa Mengestie

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We study the Schatten-class membership of generalized Volterra companion integral operators on the standard Fock spaces Fα2. The Schatten Sp(Fα2) membership of the operators are characterized in terms of Lp/2-integrability of certain generalized Berezin-type integral transforms on the complex plane. We also give a more simplified and easy-to-apply description in terms of Lp-integrability of the symbols inducing the operators against super-exponentially decreasing weights. Asymptotic estimates for the Sp(Fα2) norms of the operators have also been provided.

Article information

Banach J. Math. Anal., Volume 10, Number 2 (2016), 267-280.

Received: 11 April 2015
Accepted: 7 June 2015
First available in Project Euclid: 15 March 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 47B32: Operators in reproducing-kernel Hilbert spaces (including de Branges, de Branges-Rovnyak, and other structured spaces) [See also 46E22]
Secondary: 46E22: Hilbert spaces with reproducing kernels (= [proper] functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces) [See also 47B32] 46E20: Hilbert spaces of continuous, differentiable or analytic functions 47B33: Composition operators

Fock space Schatten class Berezin transform Volterra operator generalized Volterra companion operator


Mengestie, Tesfa. Schatten-class generalized Volterra companion integral operators. Banach J. Math. Anal. 10 (2016), no. 2, 267--280. doi:10.1215/17358787-3492743.

Export citation


  • [1] A. Aleman and J. Cima, An integral operator on $H^{p}$ and Hardy’s inequality, J. Anal. Math. 85 (2001), no. 1, 157–176.
  • [2] A. Aleman and A. Siskakis, An integral operator on $H^{p}$, Complex Variables Theory Appl. 28 (1995), no. 2, 149–158.
  • [3] A. Aleman and A. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997), no. 2, 337–356.
  • [4] O. Constantin, A Volterra-type integration operators on Fock spaces, Proc. Amer. Math. Soc. 140 (2012), no. 12, 4247–4257.
  • [5] R. Fleming and J. Jamison, Isometries on Banach Spaces: Function Spaces, Monogr. Surveys Pure Appl. Math. 129, Chapman and Hall/CRC, Boca Raton, FL, 2003.
  • [6] J. Isralowitz and K. Zhu, Toeplitz operators on the Fock space, Integral Equations Operator Theory 66 (2010), no. 4, 593–611.
  • [7] S. Janson, J. Peetre, and R. Rochberg, Hankel forms and the Fock space, Rev. Mat. Iberoam. 3 (1987), no. 1, 61–138.
  • [8] S. Li, Volterra composition operators between weighted Bergman spaces and Bloch type spaces, J. Korean Math. Soc. 45 (2008), no. 1, 229–248.
  • [9] S. Li and S. Stević, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl. 338 (2008), no. 2, 1282–1295.
  • [10] S. Li and S. Stević, Products of Volterra type operator and composition operator from $H^{\infty}$ and Bloch spacesto the Zygmund space, J. Math. Anal. Appl. 345 (2008), no. 1, 40–52.
  • [11] T. Mengestie, Volterra type and weighted composition operators on weighted Fock spaces, Integral Equations Operator Theory 76 (2013), no 1, 81–94.
  • [12] T. Mengestie, Product of Volterra type integral and composition operators on weighted Fock spaces, J. Geom. Anal. 24 (2014), no. 2, 740–755.
  • [13] T. Mengestie, Generalized Volterra companion operators on Fock spaces, Potential Anal., published electronically 20 November 2015.
  • [14] J. Pau and J. Peláez, Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights, J. Funct. Anal. 259 (2010), no. 10, 2727–2756.
  • [15] C. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschránkter mittlerer Oszillation, Comment. Math. Helv. 52 (1977), no. 4, 591–602.
  • [16] A. Siskakis, “Volterra operators on spaces of analytic functions—A survey” in Proceedings of the First Advanced Course in Operator Theory and Complex Analysis, Univ. Sevilla Secr., Seville, 2006, 51–68.
  • [17] M. Smith, Testing Schatten class Hankel operators and Carleson embeddings via reproducing kernels, J. Lond. Math. Soc. 71 (2005), no. 1, 172–186.
  • [18] K. Zhu, Operator Theory on Function Spaces, 2nd ed., Math. Surveys Monogr. 138, Amer. Math. Soc., Providence, 2007.
  • [19] K. Zhu, Analysis on Fock Spaces, Springer, New York, 2012.