Banach Journal of Mathematical Analysis

Factorizations of weighted EP Banach space operators and Banach algebra elements

Enrico Boasso, Dragan S. Djordjevic, and Dijana Mosic

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Weighted EP Banach space operators and Banach algebra elements are characterized using different kinds of factorizations. The results presented extend well-known characterizations of (weighted) EP matrices, (weighted) EP Hilbert space operators and (weighted) EP $C^*$-algebra elements.

Article information

Source
Banach J. Math. Anal., Volume 9, Number 3 (2015), 114-127.

Dates
First available in Project Euclid: 19 December 2014

Permanent link to this document
https://projecteuclid.org/euclid.bjma/1419001706

Digital Object Identifier
doi:10.15352/bjma/09-3-8

Mathematical Reviews number (MathSciNet)
MR3296128

Zentralblatt MATH identifier
1334.46039

Subjects
Primary: 46H05: General theory of topological algebras
Secondary: 47A68: Factorization theory (including Wiener-Hopf and spectral factorizations)

Keywords
Weighted Banach space operator weighted Banach algebra element weighted Moore-Penrose inverse Hermitian element positive element

Citation

Boasso, Enrico; Djordjevic, Dragan S.; Mosic, Dijana. Factorizations of weighted EP Banach space operators and Banach algebra elements. Banach J. Math. Anal. 9 (2015), no. 3, 114--127. doi:10.15352/bjma/09-3-8. https://projecteuclid.org/euclid.bjma/1419001706


Export citation

References

  • J. Benítez, Moore-Penrose inverses and commuting elements of $C^*$-algebras, J. Math. Anal. Appl. 345 (2008), 766-770.
  • E. Boasso, On the Moore-Penrose inverse, EP Banach space operators, and EP Banach algebra elements, J. Math. Anal. Appl. 339 (2008), 1003-1014.
  • E. Boasso, Factorizations of EP Banach space operators and EP Banach algebra elements, J. Math. Anal. Appl. 379 (2011), 245-255.
  • E. Boasso and V. Rakočević, Characterizations of EP and normal Banach algebra elements and Banach space operators, Linear Algebra Appl. 435 (2011), 342-353.
  • E. Boasso, D. Mosi\' c and D.S. Djordjević, Weighted Moore-Penrose invertible and weighted EP Banach algebra elements, J. Korean Math. Soc. 50 (2013), 1349-1367.
  • F.F. Bonsall and J. Duncan, Complete normed algebras Springer Verlag, Berlin, Heidelberg, New York, 1973.
  • J.B. Conway, A Course in Functional Analysis Springer Verlag, New York, Berlin, Heidelberg, Tokio, 1985.
  • D.S. Djordjevi\' c, J.J. Koliha and I. Straskaba, Factorizations of EP elements of $C^*$-algebras, Linear and Multilinear Algebra 57 (2009), 587-594.
  • H.R. Dowson, Spectral Theory of Linear operators London, New York, San Francisco, 1978.
  • L.T. Gardner, Square roots in Banach algebras, Proc. Amer. Math. Soc 17 (1966), 132-134.
  • R. Harte and M. Mbekhta, On generalized inverses in $C^*$-algebras, Studia Math. 103 (1992), 71-77.
  • R. Harte and M. Mbekhta, On generalized inverses in $C^*$-algebras II, Studia Math. 106 (1993), 129-138.
  • J.J. Koliha, Elements of $C^*$-algebras commuting with their Moore-Penrose inverse, Studia Math. 139 (2000), 81-90.
  • T. Palmer, Unbounded normal operators on Banach spaces, Trans. Amer. Math. Soc. 133 (1968), 385-414.
  • R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406-413.
  • V. Rakočevi\' c, Moore-Penrose inverse in Banach algebras, Proc. Roy. Irish Acad. Sect. A 88 (1988), 57-60.
  • Y. Tian and H. Wang, Characterizations of EP matrices ad weighted-EP matrices, Linear Algebra Appl. 434 (2011), 1295-1318.