Banach Journal of Mathematical Analysis

Hardy-type inequalities on the weighted cones of quasi-concave functions

L.-E. Persson, G. E. Shambilova, and V. D. Stepanov

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The complete characterization of the Hardy-type $L^p - L^q$ inequalities on the weighted cones of quasi-concave functions for all $p,q \in (0,\infty)$ is given.

Article information

Source
Banach J. Math. Anal., Volume 9, Number 2 (2015), 21-34.

Dates
First available in Project Euclid: 19 December 2014

Permanent link to this document
https://projecteuclid.org/euclid.bjma/1419001102

Digital Object Identifier
doi:10.15352/bjma/09-2-3

Mathematical Reviews number (MathSciNet)
MR3296103

Zentralblatt MATH identifier
1312.26046

Subjects
Primary: 26D15: Inequalities for sums, series and integrals
Secondary: 47G10: Integral operators [See also 45P05]

Keywords
Hardy-type inequality weight measure Lorentz space concave function quasi-concave function

Citation

Persson, L.-E.; Shambilova, G. E.; Stepanov, V. D. Hardy-type inequalities on the weighted cones of quasi-concave functions. Banach J. Math. Anal. 9 (2015), no. 2, 21--34. doi:10.15352/bjma/09-2-3. https://projecteuclid.org/euclid.bjma/1419001102


Export citation

References

  • M. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for non-increasing functions, Trans. Amer. Math. Soc. 320 (1990), 727–735.
  • C. Bennett and R. Sharpley, Interpolation of operators, Academic Press, Boston, 1988.
  • M.J. Carro, J.A. Raposo and J. Soria, Recent developments in the theory of Lorentz spaces and weighted inequalities, Memoirs Amer. Math. Soc. 877 (2007).
  • M.L. Goldman, H.P. Heinig and V.D. Stepanov, On the principle of duality in Lorentz spaces, Canad. J. Math. 48 (1996), no. 5, 959–979.
  • M.L. Goldman and M.V. Sorokina, Three-weighted Hardy-type inequalities on the cone of quasimonotone functions, Doklady Math. 71 (2005), no. 2, 209–213.
  • A. Gogatishvili and L. Pick, Discretization and antidiscretization of rearrangement-invariant norms, Publ. Mat. 47 (2003), 311–358.
  • A. Gogatishvili and V.D. Stepanov, Reduction theorems for weighted integral inequalities on the cone of monotone functions, Russian Math. Surveys, 68 (2013), no. 4, 597–664.
  • A. Gogatishvili, R. Mustafayev and L.-E. Persson, Some new iterated Hardy-type inequalities, J. Funct. Spaces Appl. 2012, Art. ID 734194, 30 pp.
  • A. Gogatishvili, R. Mustafayev and L.-E. Persson, Some new iterated Hardy-type inequalities: the case $\theta=1$, J. Inequal. Appl. 2013, 2013:515.
  • L.V. Kantorovich and G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.
  • L.-E. Persson, O.V. Popova and V.D. Stepanov Weighted Hardy-type inequalities on the cone of quasi-concave functions, Math. Inequal. Appl. 17, (2014), no 3, 879–898.
  • D.V. Prokhorov and V.D. Stepanov, On weighted Hardy inequalities in mixed norms, Proc. Steklov Inst. Math. 283 (2013), 149–164.
  • E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145-158.
  • G. Sinnamon, Embeddings of concave functions and duals of Lorentz spaces, Publ. Mat. 46 (2002), 489–515.
  • G. Sinnamon and V.D. Stepanov, The weighted Hardy inequality: new proofs and the case p=1. J. London Math. Soc. 54 (1996), 89–101.
  • V.D. Stepanov, Integral operators on the cone of monotone functions, J. London Math. Soc. 48 (1993), 465–487.